
“Lucian Blaga” University of Sibiu
“Hermann Oberth” Engineering Faculty

Computer Engineering Department

Optimized Algorithms for
Network-on-Chip Application

Mapping

PhD Thesis

Author:
Ciprian RADU, MSc

PhD Supervisor:
Professor Lucian N. Vinţan, PhD

SIBIU, September 2011

Universitatea “Lucian Blaga” din Sibiu
Facultatea de Inginerie “Hermann Oberth”
Catedra de Calculatoare şi Automatizări

Algoritmi optimiza ți pentru
maparea aplicațiilor pe arhitecturi

de tipul Network-on-Chip

Teză de doctorat

Autor:
Ing. Ciprian RADU

Conducător ştiinţific:
Prof. univ. dr. ing. Lucian N. Vinţan

SIBIU, Septembrie 2011

Dedicată fratelui meu... Dedicated to my brother...

http://alexraduland.wordpress.com/

i

Mul ţumiri

Munca prezentată în această teză de doctorat a fost efectuată în Centrul de Cercetare
pentru Arhitecturi Avansate de Procesare a Informației (Advanced Computer
Architecture and Processing Systems – ACAPS – http://acaps.ulbsibiu.ro) al Universităţii
“Lucian Blaga” din Sibiu, România, în perioada 2008 – 2011.

Mulţumesc coordonatorului meu ştiinţific, domnul profesor Lucian Vinţan, pentru
încurajarea şi ghidarea mea către cariera doctorală. Coordonarea ştiinţifică, sfaturile,
corectările riguroase, comentariile constructive şi suportul său necondiţionat au fost
esenţiale pentru succesul meu, încă din perioada când eram doar student.

Mulţumiri, de asemenea, domnului profesor Theo Ungerer de la Universitatea din
Augsburg din Germania pentru că mi-a permis să fac parte din echipa sa de cercetare
timp de cinci luni, ca stagiu de pregătire în străinătate a doctoratului meu. Perioada din
Augsburg a fost plină de inspiraţie. Am câştigat multă experienţă şi am obţinut sfaturi
folositoare.

În timpul doctoratului am avut plăcerea să lucrez cu prietenul şi colegul meu, Horia
Calborean. Aş dori să îi mulţumesc pentru buna colaborare şi pentru observaţiile sale
valoroase.

Aş dori să mulţumesc, de asemenea, tuturor membrilor Catedrei de Calculatoare, în
special domnului conferenţiar univ. dr. ing. Remus Brad, domnului conferenţiar univ. dr.
ing. Adrian Florea şi domnului asistent univ. dr. ing. Árpád Gellért. A fost o plăcere să
lucrăm împreună.

Le sunt profund recunoscător şi domnului profesor Nicolae Ţăpuş şi echipei de cercetare
de la Universitatea Politehnica din Bucureşti, România. Aş dori să mulţumesc în special
domnului conferenţiar univ. dr. ing. Emil Slusanschi şi domnului asistent univ. Alexandru
Herişanu pentru ajutorul oferit în exploatarea sistemului nostru HPC şi pentru că mi-au
permis şi m-au ajutat să obţin o parte din rezultatele experimentale pe supercalculatorul
de la universitatea dumnealor.

În plus, mulţumesc celorlalţi co-autori şi colegi, Shahriar Mahbub (masterat) şi Andreea
Gancea (licenţă), cu care de asemenea am lucrat.

Vreau să îmi exprim sincera şi profunda recunoştinţă familiei mele şi Nicoletei, pentru
sprijinul şi înţelegerea oferite.

Această lucrare a fost susţinută de contractul financiar POSDRU 7706: Creşterea rolului studiilor
doctorale şi a competitivităţii doctoranzilor într-o Europă unită cofinanţat din Fondul Social European
prin Programul Operaţional Sectorial Dezvoltarea Resurselor Umane 2007 - 2013.

Sibiu, Septembrie 2011
Ciprian Radu

http://webspace.ulbsibiu.ro/ciprian.radu/

ii

Rezumat

În zilele noastre, tendinţele tehnologice au determinat arhitecturile de calculatoare să
ajungă la aşa-numitul power wall. Datorită continuei micşorări a tranzistorilor, densitatea
de putere pe centimetru pătrat a ajuns la limita superioară. Din această cauză, arhitecţii de
calculatoare au hotărât să înceteze îmbunătăţirea performanţei design-urilor acestora prin
intermediul scalării frecvenţei. În loc de aceasta, mai multe procesoare sunt plasate pe
acelaşi chip. Sistemele multicore şi manycore oferă o performanţă crescută faţă de
arhitecturile cu un singur core (nucleu de procesare), prin efectuarea de procesare
paralelă. De asemenea, arhitecturile de calculator specifice pentru aplicaţii îmbunătăţesc
performanţa prin utilizarea de procesoare eterogene în locul celor omogene. Evident,
astfel de arhitecturi trebuie să fie interconectate pentru a comunica. Potrivit viziunii
HiPEAC [1], în momentul de faţă comunicarea defineşte performanţa. Reţelele de
interconectare au o foarte mare importanţă. Cele bazate pe magistrală de transmisie (bus)
nu sunt potrivite pentru sistemele multicore şi manycore pentru că ele nu scalează [2].

După anul 2000, reţele interconectate pe chip, numite arhitecturi Network-on-
Chip (NoC), au fost propuse drept o alternativă fezabilă pentru reţelele bus. Reţelele NoC
au avantaje importante cum ar fi modularitatea şi scalabilitatea, dar sunt și extrem de
limitate în resurse. Ca urmare, există multe probleme de cercetare în domeniul NoC [3].

Maparea aplicaţiilor pe arhitecturi de tipul Network-on-Chip este una dintre cele
mai oneroase probleme (NP completă), în această zonă de cercetare. De vreme ce o
abordare exhaustivă este nefezabilă, pentru această problemă sunt folosiţi algoritmi
euristici. Scopul acestei teze este să evalueze şi să optimizeze algoritmi (mono-obiectiv şi
multi-obiectiv) pentru maparea aplicaţiilor pe arhitecturi de tipul Network-on-Chip.

Primul obiectiv al acestei teze este să se prezinte stadiul actual al algoritmilor
proiectați pentru problema mapării aplicaţiilor pe arhitecturi Network-on-Chip. Apoi,
propunem de asemenea o taxonomie pentru aceşti algoritmi.

Zona de cercetare a arhitecturilor Network-on-Chip este relativ nouă. Ca atare,
unelte puternice şi mature sunt încă aşteptate. Din câte ştim, la această dată nu există un
cadru unitar open source (gratuit) pentru evaluarea şi optimizarea algoritmilor pentru
maparea aplicaţiilor pe arhitecturi de tipul Network-on-Chip. Cel de al doilea obiectiv al
nostru este să proiectăm un cadru comun pentru evaluarea şi optimizarea algoritmilor
pentru diferite mapări pe arhitecturi multiple de tipul Network-on-Chip.

Al treilea obiectiv este să optimizăm şi să adaptăm un algoritm de tipul Simulated
Annealing pentru maparea aplicaţiilor pe NoCuri, folosind cunoștințe de domeniu.
 Al patrulea obiectiv constă în evaluarea şi optimizarea (folosind cunoștințe de
domeniu) algoritmilor evolutivi pentru maparea multi-obiectiv a aplicaţiilor pe NoCuri.
 În cele din urmă, ne propunem să efectuăm o explorare automată, ghidată de
aplicație, a spațiului arhitectural pentru Sisteme on Chip. Aceasta implică sisteme
specifice aplicaţiilor, cu procesoare eterogene, utilizând o reţea NoC parametrizabilă.
 Această teză aduce contribuţii originale în optimizarea sistemelor de tipul
Network-on-Chip. Contribuim cu unelte pentru simulare şi benchmarking. Optimizăm
algoritmi pentru problema mapării aplicaţiilor pe arhitecturi NoC. De asemenea,
propunem o metodă de explorare automată, ghidată de aplicație, a spațiului arhitectural
pentru Sisteme on Chip.

“Lucian Blaga” University of Sibiu
“Hermann Oberth” Engineering Faculty

Computer Engineering Department

Optimized Algorithms for
Network-on-Chip Application

Mapping

PhD Thesis

Author:
Ciprian RADU, MSc

PhD Supervisor:
Professor Lucian N. Vinţan, PhD

SIBIU, September 2011

iv

Acknowledgments

The work presented in this PhD Thesis has been carried out in the Advanced Computer
Architecture and Processing Systems (ACAPS) research lab (http://acaps.ulbsibiu.ro) at
“Lucian Blaga” University of Sibiu, Romania, during the years 2008 – 2011.

I thank my PhD supervisor, Professor Lucian Vințan, for encouraging and guiding me
towards the Doctoral degree. His scientific coordination, his advices, his thorough
reviews, his constructive comments and his generous support were essential for my
success, starting from the period when I was just an undergraduate student.

Grateful acknowledgements go also to Professor Theo Ungerer from University of
Augsburg, Germany, for kindly allowing me to be part of his research team for five
months, as my PhD external research stage. My research stage in Augsburg was
inspiring. I gained a lot of experience and obtained good pieces of advice.

During my PhD work, I had the pleasure to work with my friend and colleague, Horia
Calborean. I would like to thank him for the good collaboration we had and for his
valuable observations.

I would also like to thank to all the members from the Computer Engineering
Department, especially to Associate Professor Dr. Ing. Remus Brad, Associate Professor
Dr. Ing. Adrian Florea and to Assistant Professor Dr. Ing. Árpád Gellért. It has been my
pleasure working with them.

My deep gratitude goes as well to Professor Nicolae Țăpuș and to his research staff from
Politehnica University of Bucharest, Romania. I would like to thank especially to
Associate Professor Dr. Ing. Emil Slusanschi and to Assistant Professor Alexandru
Herișanu for helping me with our HPC system and for allowing and helping me do part
of my experimental results on their university supercomputer.

In addition, I thank to all the other co-authors and colleagues, Shahriar Mahbub, MSc
and Andreea Gancea, BSc, with whom I have also worked.

I want to express my sincere and deep gratitude to my family and to Nicoleta, for their
support and understanding.

This work was supported by POSDRU financing contract POSDRU 7706.

Sibiu, September 2011
Ciprian Radu

http://webspace.ulbsibiu.ro/ciprian.radu/

v

Author’s Papers

Ciprian Radu, Lucian Vinţan, Domain-Knowledge Optimized Simulated Annealing for Network-
on-Chip Application Mapping, Submitted to an Elsevier journal, September 2011.

Ciprian Radu, Shahriar Mahbub, Lucian Vinţan, Developing Domain-Knowledge Evolutionary
Algorithms for Network-on-Chip Application Mapping, in review (since July 25th, 2011) at
Journal of Systems Architecture (Impact Factor: 0.667; 5-Year Impact Factor: 0.768),
July 2011.

Ciprian Radu, Lucian Vinţan, UNIMAP: UNIFIED FRAMEWORK FOR NETWORK-ON-CHIP
APPLICATION MAPPING RESEARCH, Acta Universitatis Cibiniensis – Technical Series,
"Lucian Blaga" University of Sibiu, Romania, ISSN 1583-7149, May 2011, Sibiu, Romania.

Ciprian Radu, Lucian Vinţan, Optimized Simulated Annealing for Network-on-Chip Application
Mapping, Proceedings of the 18th International Conference on Control Systems and Computer
Science (CSCS-18), Politehnica Press, pp. 452-459, ISSN 2066-4451, 24 - 27 May 2011,
Bucharest, Romania.

Ciprian Radu, Lucian Vinţan, Towards a Unified Framework for the Evaluation and
Optimization of NoC Application Mapping Algorithms, Sixth International Summer School on
Advanced Computer Architecture and Compilation for Embedded Systems (ACACES),
Academic Press, Ghent, Belgium, pp. 163-166, ISBN 978-90-382-1631-7, July 14, 2010,
Terrassa (Barcelona), Spain.

Ciprian Radu and Lucian Vinţan, Optimizing application mapping algorithms for NoCs through
a unified framework, In Proceedings of the 9-th IEEE RoEduNet International Conference, Sibiu,
Romania, pp. 259 - 264, ISBN 978-1-4244-7335-9, 24-26 June 2010. IEEE Computer Society.
Indexed IEEE, ISI , Scopus

Ciprian Radu, Horia Calborean, Adrian Florea, Arpad Gellert, Lucian Vinţan, Exploring some
multicore research opportunities. A first attempt, Fifth International Summer School on
Advanced Computer Architecture and Compilation for Embedded Systems (ACACES),
Academic Press, Ghent, Belgium, pp. 151-154, ISBN 978-90-382-1467-2, July 2009, Terrassa
(Barcelona), Spain.

Adrian Florea, Ciprian Radu , Horia Calborean, Adrian Crapciu, Arpad Gellert, Lucian Vinţan,
Understanding and Predicting Unbiased Branches in General-Purpose Applications, Buletinul
Institutului Politehnic Iasi, Tome LIII (LVII), fasc. 1-4, Section IV, Automation Control and
Computer Science Section, pp. 97-112, ISSN 1220-2169, "Gh. Asachi" Technical University,
2007, Iaşi, Romania. Indexed Zentralblatt MATH

Adrian Florea, Ciprian Radu , Horia Calborean, Adrian Crapciu, Arpad Gellert, Lucian Vinţan,
Designing an Advanced Simulator for Unbiased Branches’ Prediction, Proceedings of 9th
International Symposium on Automatic Control and Computer Science, ISSN 1843-665X,
November 2007, Iaşi, Romania.

Ciprian Radu, Horia Calborean, Adrian Crapciu, Arpad Gellert, Adrian Florea, An Interactive
Graphical Trace-Driven Simulator for Teaching Branch Prediction in Computer Architecture,
The 6th EUROSIM Congress on Modelling and Simulation, (EUROSIM 2007), ISBN 978-3-
901608-32-2, 9-13 September 2007, Ljubljana, Slovenia (special session: Education in
Simulation / Simulation in Education I).

Contents

1 INTRODUCTION... 1

2 NETWORK-ON-CHIP ARCHITECTURES... 2

2.1 DEFINITION AND ORIGINS .. 2
2.2 CHARACTERISTICS... 5
2.3 TERMINOLOGY AND FUNDAMENTALS .. 6

2.3.1 Main Components... 6
2.3.2 Topologies .. 8
2.3.3 Router Architecture .. 10
2.3.4 Routing Algorithms... 11
2.3.5 Switching Mechanisms.. 15

2.4 COMMON TOPOLOGIES AND ROUTING PROTOCOLS.. 16
2.5 RESEARCH PROBLEMS.. 17
2.6 SUMMARY .. 18

3 NETWORK-ON-CHIP APPLICATION MAPPING................ .. 19

3.1 THE NETWORK-ON-CHIP APPLICATION MAPPING PROBLEM.. 19
3.1.1 Application Mapping and Routing Problems ... 22
3.1.2 Application Mapping and Scheduling Problems .. 23
3.1.3 Scheduling Algorithms for Network-on-Chip Architectures ... 24

3.2 TAXONOMY FOR THE APPLICATION MAPPING ALGORITHMS.. 27
3.3 MAPPING ALGORITHMS FOR NETWORK-ON-CHIP ARCHITECTURES... 28
3.4 SUMMARY .. 36

4 DESIGNING A UNIFIED FRAMEWORK FOR THE EVALUATION AN D OPTIMIZATION
OF NOC APPLICATION MAPPING ALGORITHMS.............. ... 37

4.1 RELATED WORK... 37
4.1.1 NoC Designs with Topologies other than 2D Mesh.. 38
4.1.2 Network Simulation for Application Mapping Algorithms’ Evaluation................................ 39

4.2 THE UNIFIED FRAMEWORK DESIGN... 39
4.2.1 Model for Real Applications’ Communication Patterns... 41
4.2.2 Model for the Processor Elements’ Execution.. 45
4.2.3 An Interface for Representing the Inputs Used by the Unified Framework.......................... 46
4.2.4 The Scheduling Module .. 49
4.2.5 The Mapper Module ... 50

4.3 THE DEVELOPED NETWORK-ON-CHIP SIMULATOR .. 51
4.3.1 The ns-3 Network Simulation Framework .. 51
4.3.2 The ns-3 NoC Architecture ... 53
4.3.3 The Packet Format ... 54
4.3.4 Network Topologies.. 56
4.3.5 Router Architectures... 57
4.3.6 Routing Algorithms... 60
4.3.7 Switching Techniques ... 62
4.3.8 Traffic Patterns... 63
4.3.9 Network Traffic Generator ... 64
4.3.10 Power Consumption and Area Estimation... 67
4.3.11 Experimental Results ... 70

4.4 SUMMARY .. 74

5 BENCHMARKS ... 75

5.1 EMBEDDED SYSTEM SYNTHESIS BENCHMARKS SUITE (E3S)... 75
5.1.1 Automotive/industrial Application.. 76

Contents

5.1.2 Consumer Application .. 77
5.1.3 Networking Application.. 78
5.1.4 Office Automation Application ... 79
5.1.5 Telecommunication Application ... 79

5.2 AUDIO VIDEO BENCHMARKS ... 80
5.2.1 MultiMedia System (MMS) ... 81
5.2.2 Picture-in-Picture (PIP) ... 82
5.2.3 MPEG-4 Decoder ... 82
5.2.4 Multi-Windowed Displayer (MWD).. 83
5.2.5 Video Object Plane Decoder (VOPD) .. 83
5.2.6 H.264 Decoder.. 84

5.3 APPLICATION CHARACTERIZATION GRAPHS.. 85
5.4 SUMMARY .. 89

6 OPTIMIZED SIMULATED ANNEALING FOR NETWORK-ON-CHIP A PPLICATION
MAPPING. A DOMAIN-KNOWLEDGE APPROACH 90

6.1 RELATED WORK... 90
6.2 THE ALGORITHM.. 92

6.2.1 Mapping Cost ... 93
6.2.2 Annealing Schedule .. 93
6.2.3 Number of Iterations per Temperature Level ... 94
6.2.4 Acceptance Function .. 95
6.2.5 PDF-based Swapping ... 96
6.2.6 Stopping Condition ... 97
6.2.7 Summary... 98

6.3 SIMULATION METHODOLOGY .. 98
6.4 EXPERIMENTAL RESULTS... 100
6.5 SUMMARY .. 107

7 DESIGNING DOMAIN-KNOWLEDGE EVOLUTIONARY ALGORITHMS FOR
NETWORK-ON-CHIP APPLICATION MAPPING 108

7.1 RELATED WORK... 109
7.2 ENERGY- AND PERFORMANCE-AWARE GENETIC ALGORITHM... 110
7.3 ELITIST EVOLUTIONARY STRATEGY .. 111
7.4 DEVELOPING PROBLEM KNOWLEDGE CROSSOVERS.. 111

7.4.1 NoC Position Based Crossover (NPB) ... 111
7.4.2 Mapping Similarity Crossover (MS)... 112

7.5 MUTATION OPERATORS... 114
7.6 MULTI-OBJECTIVE OPTIMIZATION .. 114
7.7 SIMULATION METHODOLOGY .. 115
7.8 EXPERIMENTAL RESULTS... 116
7.9 SUMMARY .. 123

8 APPLICATION DRIVEN AUTOMATIC DESIGN SPACE EXPLORATI ON FOR SYSTEM-
ON-CHIP ARCHITECTURES... 125

8.1 RELATED WORK... 125
8.2 FRAMEWORK FOR AUTOMATIC DESIGN SPACE EXPLORATION... 127
8.3 DESIGN SPACE EXPLORATION WORKFLOW.. 129
8.4 SIMULATION METHODOLOGY .. 132
8.5 EXPERIMENTAL RESULTS... 133
8.6 SUMMARY .. 141

9 CONCLUSIONS AND FURTHER WORK ... 142

10 GLOSSARY .. 146

11 REFERENCES.. 152

“You see things; and you say, ‘Why?’
But I dream things that never were; and I say, ‘Why not?’”

George Bernard Shaw

1

1 Introduction

In the current days, the technology trends determined computer architectures to reach the
so called power wall. Due to continuously shrinking transistors, the power density per
square centimeter reached the upper limit. Because of this, computer architects decided to
stop improving the performance of their designs by means of frequency scaling. Rather
than this, more processors are placed on the same chip. Multicore and manycore systems
provide better performance than single core architectures, by performing parallel
processing. Also, application specific computer architectures yield increased performance
by employing heterogeneous processors instead of homogenous processors. Obviously,
such architectures must be interconnected in order to communicate. According to
HiPEAC’s vision [1], nowadays communication defines performance. Interconnection
networks are of high importance. Traditional bus-based networks are not suitable for
multicores and manycores, because they do not scale [2].
 After year 2000 on chip interconnection networks, called Network-on-Chip (NoC)
architectures have been proposed as a feasible alternative to bus networks. NoCs have
important advantages like modularity and scalability but, they are also extremely resource
limited. As such, there are many outstanding research problems in the NoC field [3].
 Network-on-Chip application mapping is one of the most onerous, NP-hard,
problems in this area of research. Since an exhaustive approach is infeasible, heuristic
algorithms are used to address this problem. The scope of this thesis is to evaluate and
optimize Network-on-Chip application mapping algorithms (using single-objective and
multi-objective approaches).
 The first objective of this thesis is to realize a state of the art regarding the
algorithms designed for the Network-on-Chip application mapping problem. Then we
also propose a taxonomy for these algorithms.
 The Network-on-Chip research field is relatively new. Therefore powerful and
mature tools are still expected. To the best of our knowledge, there is not currently an
open source unified framework for the evaluation and optimization of Network-on-Chip
application mapping algorithms. Therefore, our second objective is to design a
framework that uses a common frame for evaluating and optimizing different state of the
art mapping algorithms on multiple NoC architectures.
 The third objective of this work is to adapt and optimize a general Simulated
Annealing technique, for NoC application mapping, using domain-knowledge.
 Our forth objective is to evaluate and optimize (using domain-knowledge)
evolutionary algorithms, for Network-on-Chip application mapping, through a multi-
objective approach.
 Finally, we aim to perform an application driven automatic design space
exploration of System-on-Chip designs. This involves entire application specific systems,
with heterogeneous processors, using a NoC as interconnection.
 This thesis brings original contributions in the Network-on-Chip research field.
We contribute with tools for simulating and benchmarking NoC designs. We optimize
algorithms for the NoC application mapping problem. We also propose an application
driven automatic design space exploration method for System-on-Chip architectures.

“Well I am certainly wiser than this man. It is only too likely that neither of us has any
knowledge to boast of; but he thinks that he knows something which he does not know,

whereas I am quite conscious of my ignorance. At any rate it seems that I am wiser than
he is to this small extent, that I do not think that I know what I do not know.”

Socrates

2

2 Network-on-Chip Architectures

In this chapter we do a brief presentation of Network-on-Chip (NoC) architectures. We
start be defining what a Network-on-Chip is and what are its origins. We then continue
with the most important characteristics of Networks-on-Chip. Next we detail the
fundamental NoC components and we introduce the most important terms used in this
research field.
 We conclude our introduction into the field of NoC architectures by presenting
what are the main Network-on-Chip research problems.

2.1 Definition and Origins
Since the invention of the integrated circuit in 1958, Moore’s law [4] describes a trend in
Computer Engineering that is still nowadays. For more than half a century, the number of
transistors that can be placed onto a single chip doubles approximately every two years
(initially it was one year, than Moore readapted its law) [5]. In the early beginnings, a
computer system occupied an entire room. As technology evolved, in the 70s the Large
Scale Integration (LSI) era began and the computers were rack-level systems. In the 80s,
Very Large Scale Integration (VLSI) era began. This meant a system can be placed on a
single board. Ten years later, in the 90s, we went to chip-level systems (ULSI – Ultra
Large Scale Integration). Nowadays, billion transistors can be integrated on a single die.
A chip is an entire system and so, the term System-on-Chip (SoC) was coined. Systems-
on-Chip make use of parallel processing at all levels: Instruction Level Parallelism (ILP),
Memory Level Parallelism (MLP) and Thread Level Parallelism (TLP) [6], [7], [8], [9].
We researched these levels of parallelism previously by focusing on branch prediction
[10], [11], [12] and multicore architectures [13], [14]. SoCs are feasible for a wide range
of applications. However, they determine the architects to focus on the complex aspects
of the communication architecture.

The continuously growing number of transistors per chip leads to a bigger and
bigger gap between logic gate delays and wire delays [15]. As compared with the gate
delays, the global interconnection wires used by a typical bus interconnection network
determine significantly higher delays.

Systems-on-Chip also incur problems related to complexity, design flexibility and
productivity and system synchronization. Achieving global synchronization is getting
harder and harder as technology advances and chip speed increases.

Currently, computer architects face with the difficult problem called Power Wall.
As it may be seen in the following figure, the power density grows exponentially with the
clock frequency.

Network-on-Chip Architectures

3

Fig. 1 Power Wall (image adapted from: CS 194 Parallel Programming Why Program for

Parallelism?, Katherine Yelick, Berkeley)

The Power Wall is what mainly determined the appearance of multicore and manycore
architectures [16]. Parallel programming is needed to exploit multicores. Obviously, such
architectures require scalable interconnection networks. It is well-known that the bus is
not a scalable interconnection network [2].
 The gap between on-chip and off-chip communication is increasing. On-chip, we
have greater bandwidth and shorter latencies but, the power budget is smaller. Besides
scalability, on-chip communication also means flexibility, simplicity and efficiency.
Flexibility is achieved by no longer using application-specific wiring (like buses do).
Simplicity refers to modular, structured and regular design. Efficiency means the
interconnection’s ability to share global wires between different communication flows.
Communication is a performance bottleneck. Because of this, the design shifts from a
processing-centric to a communication-centric approach.
 Simply stated, a Network-on-Chip (NoC) is a communication network that is
used on a single chip. A Network-on-Chip consists of a number of interconnected
heterogeneous devices (e.g. general or special purpose processors, embedded memories,
application specific components, mixed-signal I/O cores) where communication is
achieved by sending packets over a scalable interconnection network. No global
wiring is used by a NoC. Wiring resources are shared by the communicating devices. The
idea appeared in the 90s but it started to be researched only from year 2000. Some of the
first papers introducing the NoC concept are [17], [18], [19], [20], [21], [22] and [23].
 The limitations of bus based interconnects are presented in [17] and an on-chip,
packet-switched, interconnection network is proposed. The authors of [18] propose a
NoC design methodology and introduce the honeycomb structure. In this design, each IP
core is placed on a hexagonal node connected to three switches. The switches are directly
connected to their nearest neighbors.

The Network-on-Chip architecture was introduced in [19] as a better alternative to
global wiring structures, used to interconnect different Intellectual Property (IP) blocks1.
The NoC in [19] has a regular tile-based architecture that offers several advantages over

1 An IP can be: a CPU core, a DSP core, a video processor etc.

Network-on-Chip Architectures

4

traditional interconnection networks. The structured network wiring allows a better
control of the electrical parameters of the network's wires. This provides the opportunity
to obtain reduced power consumption. Another advantage of NoCs is given by
modularity and standard network interfaces, which provide re-usability and
interoperability of the modules. Wiring resources are shared by the communicating IPs:
when one module is not communicating, other modules can still use the wiring resources
used by the (now) idle module. No global wiring is used by a Network-on-Chip. The IPs
communicate by sending packets to one another.

MicroNetwork [20] is a specific NoC architecture that was integrated into SoCs.
The MicroNetwork designers argue that NoCs are the fundamental communication
architectures for complex System-on-Chip designs.

A packet-switched router architecture for NoCs is presented in [21]. A two-phase
design methodology for a MxN 2D mesh NoC is presented in [22]. The first phase
derives a concrete architecture from a general NoC template. The second phase maps the
application onto the concrete architecture to form a concrete product.

NoC is presented as a new paradigm in [23]. The Network-on-Chip characteristics
are outlined. The authors introduce a protocol stack, made of three network layers:
physical (wiring), architecture and control (composed of: data link (flits), network
(routing of packets), transport (messages into packets and vice-versa)) and software
(application and system).

The Network-on-Chip research field is relatively new and of high importance. In
HiPEAC’s vision [1], nowadays communication defines performance. Communication is
essential at three levels: (1) between a processor and its memory, (2) between a
multicore’s different processors and (3) between processing systems and input/output
devices. At the processor – memory level, the impact of communication on performance
is basically controlled through cache hierarchies. At the other two levels, it is the role of
the interconnection network to deal with the communication cost so that performance is
less affected. More precisely, more and more processors are integrated on the same chip.
Since power defines performance, multicores are now the solution for achieving higher
performance. In this context, traditional buses, which allow the processors to
communicate, no longer suffice. Networks-on-Chip provide the scalability that buses
lack. Therefore, NoCs will have an increasing importance in the following years. The
growing interest in this area of research is stressed out in HiPEAC’s vision [1]:
interconnects is one of the clusters on which HiPEAC’s roadmap is built.

A component-based hardware design methodology is envisioned in the future [1].
This means that systems will be built from standard reusable components like memories,
cores and interconnection networks. This design technique applies however at multiple
levels. The level of abstraction increases progressively. Basic blocks (gates, registers,
ALUs etc.) make components (processors, NoCs etc.). Components are then used to
create different kinds of chips (CPUs, GPUs and so on), which in turn are used to obtain
systems that also are interconnected, leading to systems of systems.

Obviously, the importance of interconnection networks increases as the number of
communicating components raises. For intra-chip communication, the NoC is the
solution and this is due to at least one factor: scalability. As the number of cores
increases, the impact of memory bandwidth and memory latency becomes more and more
stringent. Networks-on-Chip help at controlling the problems of memory bandwidth and

Network-on-Chip Architectures

5

latency. However, NoCs have a lot of issues that need solving. For example, they still
require a lot of power and occupy large areas of the chip.
 More precisely, research in the field of interconnection networks is required by all
of HiPEAC’s current research objectives: Design Space Exploration (DSE), concurrent
programming models and auto-parallelization, design of optimized components, self-
adaptive systems and virtualization.
 Performing Design Space Exploration (DSE) for entire systems is currently a
challenge. Unified DSE frameworks, that include the interconnection networks, are
estimated to be available only between years 2016 and 2020 [1]. HiPEAC Consortium
also estimates that the design space of interconnects will be feasible for exploration only
around the year 2015. Only then, network traffic models, benchmarks and realistic
performance/power models will be available for on-chip interconnection networks.
 Developing concurrent programming models requires network interface
mechanisms which efficiently support the cache coherence protocols and the
communication between processors.

Electronic Design Automation (EDA) refers to a set of methods and tools that help
at improving the system’s design efficiency. EDA includes (among others)
hardware/software modeling and partitioning and mapping applications to Multi-
Processor System-on-Chip (MPSoC) architectures (related to this is the mapping problem
for Network-on-Chip architectures). EDA has several challenges related to
interconnection networks:

- full system simulation, including the interconnections;
- designing application-specific networks;
- designing reusable interconnection modules through interface standards.
Creating interconnection network architectures which reduce power, latency and

integration area is a challenge of designing optimized components. The interconnection
network may also be optimized by using dynamic power management techniques.
Another goal is to design on-chip memory hierarchies.

A challenge of self-adapting systems is to design fault tolerant network
architectures and protocols. The network traffic may also be monitored and controlled.
Such data may be used by the run time system for self-adaptation.

Network interconnection is important for virtualization as well, from the point of
view of system security and quality of service. The network may be physically or
logically partitioned. A research challenge is to identify how network topologies and
routing algorithms can help at system partitioning and isolation.

2.2 Characteristics
We enumerate next the most important Network-on-Chip characteristics: structured
wiring, modularity, scalability, reliability, data abstraction, network modeling and
productivity.

The NoC allows its communication links to be reused. No application-specific
wiring is used. This approach increases the network’s performance by reducing its delays
and power consumption. The NoC is modular because it is made of several building
blocks. As compared to a bus interconnection, the NoC has a scalable topology. The data
communicated is divided into messages. Messages are composed of packets with a well-
defined structure. Then, packets are further divided into flits and, flits into phits,

Network-on-Chip Architectures

6

according to the layered network modeling used. The data transferred through a NoC is
more reliable because the packets are verified for errors. All the above imply a higher
NoC design productivity.
 NoCs are very similar to general purpose networks (for traditional parallel and
distributed computers). However, they are different in at least two ways: system cores
granularity and homogeneity [15]. While the general networks are coarse grained and
homogenous, NoCs are rather fine grained and heterogeneous. The NoC is placed on a
single chip along with its IP cores. It is much more constrained by resources and it
usually interconnects different processors.

2.3 Terminology and Fundamentals
We present in this section the main components of a Network-on-Chip architecture. We
also briefly present and classify the network topologies, routing and switching
algorithms. We focus only on the ones which are most common in the NoC research
field. During this section we also define some of the most used terms in networks
domain. We note that a glossary is available at the end of this thesis, in Chapter 10.

2.3.1 Main Components
The following figure presents a typical Network-on-Chip architecture. The NoC is placed
on a single chip, which is divided into regular tiles. A tile is a part of the chip that
contains an IP core and a network router. The tile is also called a Network-on-Chip node.
As it may be seen below, the IP cores are usually heterogeneous in such design because,
generally speaking, applications are heterogeneous. We can have general purpose
processors (CPU 1, 2, 3, 4), application specific cores (Application Specific Integrated
Circuits, Digital Signal Processors etc.), memory modules, input/output devices and so
on. Obviously, the NoC tiles can also be irregular, i.e. of different sizes.

CPU 1

I/O

CPU 2

DSP 1

ASIC 1 DSP 2

ASIC 2

CPU 3

CPU 4

NA

IP core

router

buffer

link

Fig. 2 NoC main components

In NoC terminology, an IP core is also called a Processing Element (PE). The PE
performs computation and communicates with other PE’s by messages, which are sent
through the communication network. The IP core is connected with the network using a

Network-on-Chip Architectures

7

Network Adapter (NA). NA’s purpose is to provide an interface between the cores and the
network. It specifies how the communication services are made available to any IP core
type. As it may be seen in the following figure, the Network Adapter separates
computation from communication.
The Network Adapter provides two
interfaces: one for cores and another one
for the network. It handles the messages
generated by the cores by breaking them
into smaller units called packets. A packet
is the logical unit of information that is
transmitted trough a network route, using
routers. The packet is made of the
following parts: a header, a data payload
and a tail (or trailer). The packet header is
the front of the packet and contains
information about the source and destination NoC nodes. This helps the NoC to decide
the path of the packet (its route). The data payload is the second packet component. It
holds the data transmitted by the IP core across the NoC. The packet tail marks the end of
the packet and it typically contains codes for error checking and correction (if possible).
 A packet is made of flow control units (flits). A flit is the minimum unit of
information that can be transferred across a link and either accepted or rejected [24].
Each flit is made of one or more physical units (phits). The phit is the minimum size
datagram that can be transmitted in one link transaction [15]. Usually a flit is equivalent
to a phit. This is also the case in this entire work. The link is a set of wires and fibers that
carries an analog signal [24]. Transmitters and receivers are used to convert digital
signals to and, respectively, from analog signals. A communication channel is composed
of a transmitter, a link and, a receiver.
 The router is the NoC component which drives the information though the
network. It uses a routing algorithm to determine which of the possible paths, from
source to destination, are used as routes and which route is taken by each particular
packet. Buffers are used to store the flits until the router can handle them. The router
contains a switch that provides the means to route the information. A switching
mechanism determines how and when the data traverses its route2. In NoC architectures
packet switching is used. That means messages are broken into a sequence of packets and
that packets are individually routed. This is opposed to circuit switching where the entire
network path is reserved until the whole message is transmitted.
 Networks-on-Chip use a four level OSI layering. The top level is the
Application/Presentation level. Here, messages are injected by IP cores into the NoC. At
the Session/Transport level, the Network Adapter splits messages into packets. Packet
flits are then routed from their source node to their destination at the Network level. Flits
are divided into phits, which are communicated though links at the Link/Data level.
 We present next some of the most common network topologies, a typical NoC
router architecture and some of the most known routing and switching algorithms.

2 According to [24], when data traverses its route is associated to a flow control mechanism. We have
however adopted the terminology from [3], where the switching notion encapsulates the flow control
mechanism.

Core Interface

(CI)

Network Interface

(NI)

Network Adapter
computation

communication

Fig. 3 The Network Adapter

Network-on-Chip Architectures

8

2.3.2 Topologies
The network’s topology specifies how its nodes are interconnected by links
(communication channels). Some of the most important properties of a topology are the
node degree, the topology diameter and the bisection bandwidth. The node degree is the
number of channels entering and leaving each node. The network diameter is the length
of the maximum shortest path between any two nodes of the network. The bisection
bandwidth is the sum of the bandwidths of the minimum set of channels that, if removed,
partition the network into two equal unconnected set of nodes. From a topological point
of view, a network may be direct or indirect. In a direct network each node has two
functions. It produces or consumes packets and it also acts as a switch. In an indirect
network, the node has only one of the two functions.

Next, based on [24] [25] [26], we briefly show the most common network
topologies. This is not by far an exhaustive coverage of the network topologies space. We
start with topologies for direct networks and then we move to indirect networks.

2.3.2.1 Some of the Most Common Network Topologies
The most popular direct networks are called k-ary d-cube networks. Such a network has k
nodes in each of its d dimensions. Each two (horizontally or vertically) adjacent nodes
are interconnected. The edge nodes may have wrap-around links. In this category of
networks we encounter: the linear array, the ring, the mesh, the torus and the cube.

Fig. 4 From left to right: 2D mesh, 2D torus, cube

Mesh (array) topologies are also called d-dimensional k-ary mesh, and torus topologies
are also called d-dimensional k-ary torus but, they are also collectively called meshes.
The node degree is between d and 2d. The network diameter is d(k - 1). For an even k, the
bisection is kd-1. For an odd k, the bisection
is a little bigger.

A lot of different topologies may be
obtained from k-ary d-cube networks. Such
an example is the hypercube.
In geometry, the hypercube is the n-
dimensional analogue of a square (n = 2) or
a cube (n = 3). It is a closed and convex
geometrical figure that has the topological
graph made of groups of opposite parallel
line segments, equal in length, aligned and
perpendicular to each other [27]. The hypercube is also called an n-cube. The 4-cube is
called a tesseract. In networks domain, the hypercube is a 2-ary (binary) d-cube network.

Fig. 5 hypercube (2-ary 4-cube)

Network-on-Chip Architectures

9

 In k-ary d-cube networks the diameter increases with d N , where N is the number
of nodes. However, for tree topologies the diameter increases only logarithmically
(N2log2 for a tree with N leaves). The bisection is one. A binary tree has degree three.
A tree topology has a root node. This node is connected to a number of (descendant)
nodes, which may also be connected to a number of descendant nodes and so on until we
reach the leaf nodes (i.e. nodes with no descendants). A tree in which every node (except
the leaves) has a fixed number k of child nodes is called a k-ary tree. Trees may be
balanced or unbalanced. A tree is called balanced when the distance from each leaf node
to the root is the same.

A major disadvantage of tree topologies is that, for any two nodes, there is a
single route between them. This means no fault tolerance is available. Also, removing a
single link from a tree bisects the network. For these reasons, fat-tree [26] topologies
have been proposed. In a fat-tree, a node’s forward link (to the parent node) has twice the
bandwidth of its backward link (to the child node). A fat-tree may also be an indirect
network. In this situation, only the leaf nodes
of the tree are network nodes which
inject/receive packets. The rest of the nodes
(including the root) perform only as
switches.
 The root node of a tree topology is
clearly a bottleneck in the network. This
problem may be solved by creating more
roots. Such a network is called a butterfly.
This is an indirect network. Its basic building
block is a 2x2 switch that crosses one of each
pair of edges. Similar to meshes and tori, the family of butterflies is called k-ary d-fly
[25]. The butterfly has a diameter of N2log and a bisection of N/2.
 One of the most important indirect networks is the crossbar. A N × M crossbar
directly connects N inputs to M
outputs with no intermediate
network hops. This type of
network is also called a non-
blocking network.
The crossbar requires no
buffering. There is a direct
connection between any (input,
output) pair of nodes. However,
its cost increases rapidly as the
number of inputs and/or outputs
increases significantly. Ideally,
it would be to have an entire
network as a crossbar but, this is
not possible because of its high cost. Otherwise, any router from a direct network
contains a crossbar.

Crossbars are also used at building other indirect networks. Such an example is
the Clos [25] network. This is a three-stage network in which each stage is composed of a

0 1 0 1

0 1 0 1

Fig. 6 The basic building block of a butterfly

M outputs

N

inputs

switch switch switch switch

switch switch switch switch

switchswitchswitchswitch

Fig. 7 N x M crossbar

Network-on-Chip Architectures

10

number of crossbars switches. A Clos is usually characterized by a triple (m,n,r), where m
is the number of middle-stage switches, r is the number of input and output switches and
n is the number of inputs and outputs that each input and output switch has. The r input
switches are n x m crossbars. The middle switches are r x r crossbars and the r output
switches are m x n crossbars. The main advantage of the Clos network is given by its high
routing path diversity: for any traffic, there are m possible routes available. A (2,2,2) Clos
network is also called a Benes network.

Obviously, a lot of other network topologies exist in the literature. For example,
the concentrated mesh [28] is a mesh-like directed network where a router services four
nodes. The flattened butterfly [29] is a variant of the butterfly network. It halves the cost
of a Clos network, with a similar performance. There are also hybrid topologies and
irregular networks but, we confine to the most popular ones.

2.3.3 Router Architecture
We briefly present next a typical router architecture for Networks-on-Chip along with its
mode of operation.

VC state

.

.

.

.

.

.

.

.

.

crossbar switch

.

.

.

Input

port

Input

port

Output

port

Output

port

Routing

module

VC

allocator

Switch

allocator

VC state

Routing Computation

(RC)

Virtual Channel

Allocation (VA)

Switch Allocation

(SA)

Switch Traversal

(ST)

Fig. 8 Typical router architecture (left) and router operation (right)

As shown in the above figure, the router data path consists of buffers and a (crossbar)
switch. The input buffers store flits while they are waiting to be forwarded to the next
NoC node. When virtual channels are used, there are multiple input buffers for each
physical channel so that flits can flow as if there are multiple virtual channels. When a flit
is ready to move, the (crossbar) switch connects an input buffer to an appropriate output
channel. Three modules are used for controlling the router data path: a routing module, a
virtual channel (VC) allocator, and a switch allocator. These control modules determine

Network-on-Chip Architectures

11

the next hop (NoC node), the output virtual channel, and respectively when the switch is
available for each flit.

The router operation mode has four phases: Routing Computation (RC), Virtual
channel Allocation (VA), Switch Allocation (SA) and Switch Traversal (ST). These
phases often represent one to four pipeline stages in modern virtual channel routers.
When a head flit arrives at an input channel, the router stores it in the buffer for its
corresponding virtual channel and determines the next hop for the packet (RC phase).
Knowing the next NoC node, the router then allocates an output virtual channel (VA
phase). Finally, the flit competes for the switch (SA phase) and moves to the output port
(ST phase). Optionally, buffers for the output ports may be used. If so, the flits will stay
in these buffers until the channel is ready to transmit them. If output buffering is not
available, the flits will not be allowed to traverse the switch until the output channel is
available.

2.3.4 Routing Algorithms
In this section, we briefly present (based on [24] [25] [26]) some of the most common
routing algorithms. A routing algorithm has the purpose of establishing the path taken by
a packet, from where it was injected into the network, the source node, up to its
destination node. Before presenting different routing algorithms, we present the
taxonomy for routing protocols.

2.3.4.1 Taxonomy for Routing Protocols
We adopt the routing protocols taxonomy from [26] with only a few minor observations.
It can be seen that routing mechanisms may be classified based on many factors.

Based on how many destinations a packet has, the routing may be unicast (single
destination) or multicast (multiple destinations).

The routing decisions can be taken by a single controller. In this case the routing
is centralized. When the routing path is determined at the source node, before the packet
is injected, we have source routing. The routing path may also be determined while the
packet travels from node to node. In such cases, the routing is distributed. Hybrids of
these three types of routing decisions are also possible and they are included in
multiphase routing.

A routing algorithm may be implemented using a routing table or a finite state
machine. Table lookup means searching for a routing path into the routing table. Finite
state machine allows routing decisions to be taken at runtime.

The adaptivity criterion is the one that we are going to focus on in this section.
Deterministic (non-adaptive) routing means that the same path is chosen every time a
packet must be routed between the same (source, destination) node pair. Adaptive routing
uses information about the network state and thus, it may provide different paths at
different moments. Oblivious routing is another type of routing adaptivity. It is not
presented in the cited taxonomy, but it is described in [25]. It does not use information
about network’s state and it also does not provide the same routing path every time.
Oblivious routing uses a stochastic mechanism to determine the path. For example, a
random algorithm that uniformly distributes the traffic across all of the available paths
implements an oblivious algorithm. Oblivious routing may be seen as a hybrid between
deterministic and adaptive routing.

Network-on-Chip Architectures

12

Progressiveness refers to how the channel is reserved in order to route a packet
forward. With progressive routing a new channel is reserved at each new routing
operation by moving the packet header forward. Backtracking routing allows the packet
header to return, releasing the reserved channel. A backtracking protocol considers that it
is better to search for alternative paths than to wait for a channel to become available. If
the channel is faulty, it will remain unavailable until it is repaired. Potential paths are
searched in a depth-first manner by probing the network with a header flit. When the
header cannot go forward, it returns to the last acquired channel, releases it, and it
continues its search from there.

Minimality is related to the length of the routing paths. A minimal (profitable)
routing always generates routing paths of minimum length. Nonminimal (misrouting)
means that the paths may be longer than the minimum path (for example, to avoid
network congestion).

Routing a packet can take into consideration all of the available paths (complete,
fully adaptive routing) or just a subset of them (partially adaptive).

2.3.4.2 Dimension-Order Routing
Dimension-Order Routing (DOR) [25] is a deterministic routing protocol used for k-ary
d-cube networks (like meshes and tori). The digits of the destination address are seen as a
radix-k d-digits number and they are used one at a time to direct the packet. Each digit is
used to select a node in a given dimension. DOR is also a minimal routing algorithm.
Thus, at each step the shortest direction is selected: a torus may be traversed either from
left to right or from right to left and, respectively, from up to down or from down to up.

We find the preferred direction in each dimension by computing the relative
address for each digit i of the source and destination addresses:





 ≤−=∆

−=

othewisek

k
mm

ksdm

i
ii

iii

,
2

,0

mod

The preferred direction for dimension i is then computed like:







∆

=∆=
otherwisesign

k
D

i

i
i

),(
2

,0

After computing the preferred direction vector (dDDDD ...10=), the packet will be

routed in one dimension at a time. It travels in a dimension until it reaches the same
coordinate like the destination (in that dimension).

Dimension-Order Routing is a very simple algorithm. It is used very much with
mesh and torus networks because it is easy to implement and because it is deadlock-free
(except when d = 1 – one dimension). DOR is also a minimal-path routing algorithm.

This algorithm is used for hypercubes as well. In this case it is named e-cube
routing. For bidimensional meshes or tori it has two variants: XY and YX. With XY
routing the X (horizontal) direction is routed first. With YX routing, the packet travels
first in vertical direction.

Network-on-Chip Architectures

13

2.3.4.3 Destination-Tag Routing
Destination-Tag Routing is a deterministic algorithm, like Dimension-Order Routing but
for k-ary n-fly butterflies. The destination address is viewed as an n-digits radix-k
number. This is the only information used to route a packet. The source address is not
used for routing. Each digit of the destination address is used to select the output port at
each step of the route.

2.3.4.4 Valiant Routing
This algorithm may be applied to any topology that has at least one path between each
pair of nodes (connected topology). The principle is to route packets through an
intermediate node that is randomly chosen. Routing the packet from the source to the
intermediate node and from the intermediate node to the destination can be done with any
routing algorithm. The random selection of the intermediate node makes Valiant’s
algorithm to be an oblivious routing mechanism. Because of the randomly selected node,
this algorithm is able to balance the network load better than a deterministic algorithm.
However, this algorithm is not minimal.

2.3.4.5 Minimal Oblivious Routing
Such an algorithm tries to achieve good load balance without sacrificing the locality. The
intermediate node is still chosen randomly but, with the restriction that the resulted path
is minimal.

A minimal version of Valiant’s algorithm for k-ary d-cube network can be
implemented by restricting the intermediate node to reside in the minimal quadrant
determined by the source and destination nodes [25]. The minimal quadrant is the
smallest d-dimensional sub-network, cornered by the source and the destination nodes.

2.3.4.6 Turn Model Routing
Any routing algorithm faces two major problems: deadlock and livelock. Deadlock is a
situation when a packet waits for an event that cannot occur, for example when no
message can advance toward its destination because the queues of the message system
are full and each is waiting for another to make resources available. Livelock means a
case when routing a packet never leads to its destination (it can only occur with adaptive
non-minimal routing).
 Deadlock-free routing may be achieved by restricting the possible routes that may
be followed by packets. The purpose is to eliminate cycles. Dimension-Order Routing for
example, is deadlock-free because packets are not allowed to cycle. However, DOR
significantly reduces the path diversity: in a 2D mesh, from eight possible directions, four
of them are restricted. Freedom from livelock is also ensured because DOR is minimal.
 The turn model [30] provides a way of achieving deadlock- and livelock-free
routing algorithms that are partially adaptive. Like in the case of DOR, the turn model
restricts the routing algorithm to take some particular directions, turns. As compared to
DOR, only a quarter of the possible turns are prohibited in k-ary d-cube networks.
What the turn model does is to restrict one turn. This effectively eliminates the cycles and
leads to three possible routing algorithms, which are deadlock- and livelock-free [30]:
west-first, north-last and negative-first.

Network-on-Chip Architectures

14

With west-first routing, a packet
must always travel west first. This
is because it is disallowed to turn
back west. North-last routing
does not allow a packet to change
direction once it starts traveling up.
Finally, negative-first routing is
characterized by not allowing turns
from a positive direction to a
negative one.
 Obviously, these three algorithms may be implemented as minimal or non-
minimal.
 P-cube routing is another routing algorithm based on the turn model that applies
to hypercubes. Let us consider that we want to route a packet from node s to node d in a
binary n-cube. Thus, the source and destination nodes can be written as 021 ...ssss nn −−=

and 021 ...dddd nn −−= , where 1,0},1,0{, −=∀∈ nids ii .The algorithm builds set E as

}1,0,|{ −=∀≠= nidsiE ii .The size of E is the Hamming distance between s and d.

This set is then divided into the disjoint sets E0 and E1: }1,0,|{0 ==∈= ii dsEiiE ,

}0,1,|{1 ==∈= ii dsEiiE . P-cube routing has two phases: first, the packet is routed in
the dimensions of E0, in any order, second the packet travels in E1’s dimensions (in any
order). This algorithm is deadlock- and livelock- free [30].

2.3.4.7 Odd-even routing
Another partially adaptive routing protocol that is deadlock-free is the odd-even [31] turn
model. Compared to the previous turn model, its main advantage is that it provides a
more even routing adaptiveness for non-uniform traffic patterns.

The odd-even routing restricts the east to north and east to south turns at any
nodes located in an even column. For the odd columns, the north to west and south to
west turn are prohibited.

2.3.4.8 Torus routing
As we have mentioned earlier, deadlock freedom can be ensured by restricting the routing
algorithm to use some paths, under certain conditions. Another way to prevent deadlocks
from occurring is to use virtual channels. A virtual channel is a group of multiple buffers
associated to the same physical channel. Using virtual channels, cycles can be broken
[24].
 The torus routing protocol uses virtual channels to avoid deadlocks. It is used with
tori networks and employs Dimension-Order Routing with dateline classes to each
dimension. A dateline is a conceptual line across a channel of a ring network (or within a
single dimension of a torus). Each time a packet crosses a specified dateline for each
dimension it is routed through another virtual channel. Dateline classes basically
transform a torus into a mesh.

Fig. 9 Routing algorithms generated by the turn model

Network-on-Chip Architectures

15

2.3.4.9 Other Routing Algorithms
Obviously, there are a lot more routing algorithms available in literature. For example,
Planar adaptive routing [32] applies to n dimensional meshes, tori and hypercubes. The
main idea is to provide adaptivity in only two dimensions at a time. Thus, from the point
of view of this routing algorithm, the topology is seen as a series of bidimensional planes.
Another example is Duato’s protocol [26], which starting from a deterministic or partially
adaptive routing mechanism generates a fully adaptive routing protocol.

2.3.5 Switching Mechanisms
There are three layers which must be distinguished between in the operation of
interconnection networks [26]: the physical layer, the switching layer and the routing
layer. The physical layer contains the link-level protocols (e.g.: X.25, HDLC) used for
transmitting packets and for managing the channels between adjacent nodes. The
switching layer offers mechanisms for forwarding packets across the network, by making
use of the protocols from the physical layer. Finally, the routing layer has the
responsibility of establishing a path through the network for each message.
 The switching technique determines when and how switches are set to connect
router inputs to outputs and also the moment when a message may be transferred across
the network. There are basically two switching techniques: circuit switching and packet
switching.

In circuit switching, a physical path from the source to the destination is reserved
prior the message is transferred through the network. This path will be kept reserved until
all the message reaches the destination.

With packet switching, a message is divided into smaller parts called packets.
Each packet is routed separately from source to destination. No path is reserved until the
whole message is routed. The first few bytes of a packet form the logical header of the
packet. This typically contains routing and control information.

When all the packet’s flits are buffered at each intermediate node before they are
sent forward, this switching technique is called Store-And-Forward (SAF) switching.
Note that packet switching and store-and-forward switching denote the same switching
technique [26].

However, it is not necessarily to wait for the whole packet to arrive before start
sending the already arrived flits forward through the network. Flits can be forwarded as
soon as the routing was performed and an output buffer is free. The data does not even
need to be buffered at the output and can cut through to the input of the next router,
before the whole packet was received at the current router. This is another basic
switching technique, called Virtual Cut-Through (VCT) switching . This technique
determines messages to be pipelined in the interconnection network, and it works with
flits, as compared to store-and-forward switching, which works with packages. Compared
to SAF switching, VCT switching has the advantage that it can send messages faster.
However, it has the disadvantage that it can block entire routing paths in the network
when a message gets blocked somewhere in an intermediate node. In such a case, VCT
switching falls back to SAF switching: the whole data will get buffered at the node where
the head flit currently is. The performance of VCT reduces to the performance of SAF at
high network loads. Big buffers are still required for VCT switching (since it can
transform into SAF under high loads). Another approach would be to buffer the flits in

Network-on-Chip Architectures

16

the nodes where they currently are (and not to buffer all of them at the node where the
head flit is). This switching technique is called wormhole switching. Wormhole
switching has thus, the advantage that it allows the network to use small buffers. This
makes it the preferred switching technique for Networks-on-Chip.

2.4 Common Topologies and Routing Protocols
After a brief presentation of some of the most popular network topologies and routing
protocols, we focus onto the Network-on-Chip field. We show how NoCs are usually
topologically organized and which are the most common routing protocols used.

According to [33], meshes and tori are the topologies which are used in more than
60% of the papers currently published in the Network-on-Chip research area. The rest of
the percentage is taken by fat-trees and crossbars, in equal proportion, followed by rings.
This study also concludes that there is no single fixed topology that clearly outperforms
all the others. This is because the NoC’s performance strongly depends on the application
which runs on it. Therefore, it is useful to research the relation between the application
mapping problem and network topologies.

It is also shown in [33] that deterministic routing is used in 70% of the cases.
Hybrid routing techniques, like DyAD [34] or deflective routing were also proposed.
DyAD automatically switches between Dimension-Order Routing and odd-even routing
[35]. Deflective routing avoids network hotspots by adaptively misrouting packets.

The NoC survey from [36] concludes that XY routing is mostly used in Network-
on-Chip research. It also confirms that mesh and torus topologies are the most researched
ones, followed by ring, butterfly, octagon and even irregular networks.

An evaluation of the mesh and torus topologies, using different routing protocols
is performed in [37]. Because the torus has long wrap around links, the torus is
considered to be folded3. The Network-on-Chip is evaluated in terms of latency,
bandwidth, power consumption and power/throughput ratio. The following routing
protocols are used: XY, odd-even [35], negative-first [30] and Duato [26]. It is shown
that the XY routing protocol is the best routing technique in a mesh. This is not the case
with the torus: XY routing yields the highest power consumption and power/throughput
ratio. The more adaptive the routing protocol is, the lower the power consumption of the
torus is. This is because an adaptive algorithm makes better use of the wrap around links.
The authors conclude that a torus topology is better than a mesh when network latency is
the objective. But, in terms of power consumption, the mesh topology gives better results
than the torus. However, this study is performed only with two stochastic traffic patterns:
uniform and hotspot. No traffic patterns from real applications are used. Another
drawback is given by the fact that NoC scalability is not addressed: the mesh and torus
have a fixed 4 x 4 size. It would also be interesting to find out how these topologies, with
different routing algorithms, behave from a multi-objective point of view. For example,
rather than evaluating the ratio between power and throughput, it would be useful to
determine a tradeoff among two or more objectives.

Topology scaling is taken into account in [38]. In this paper, multiple topologies
are evaluated in terms of power consumption and technology scaling. The two objectives
were chosen because the topology has a severe impact on the power consumption and

3 A folded torus has all its links equal in length

Network-on-Chip Architectures

17

because a topology that is optimal at a current integration technology may lose its
optimality after some technology generations. This research starts with 2D mesh and
torus topologies. Then, high-dimensional meshes and tori are also studied. Other
topologies included in this research are hierarchical meshes and tori and express cubes. A
hierarchical mesh/torus, H-v, has the property that channels connect not just adjacent
nodes but also v-nodes away neighbors in each dimension. These channels are naturally
longer and they are called express channels. Similarly, the express cube is a hierarchical
network, noted as E-v. The metric used is the average energy required by a flit to reach its
destination. This is obtained with an analytical model which is general enough so that it
may be applied to all the topologies. The model allows an energy efficiency comparison
of the network topologies, across different technologies. A uniform random traffic pattern
is assumed to be applied to the networks. This is helpful for the analytical model because
the average hop count can be easily computed. Based on this model, the authors find that
hierarchical and express cubes save more energy than high-dimensional tori. The authors
also try to evaluate the topologies under different traffic patterns. To this end, they resort
to network simulation for obtaining the average hop count. Then, the same analytical
model is applied to find out the energy consumption. Simulation is performed with
RSIM, on a 10 x 10 network. Several SPLASH benchmarks are run. Their traffic patterns
are collected and the average hop count is computed. Simulation has the advantage of
allowing applying the analytical model on real applications. However, scalability is still
an issue since only 10 x 10 networks (2D torus, H-2, H-3, H-4, E-2, E-3, E-4) are
analyzed.

The design space of Network-on –Chip topologies is explored in conjunction with
the application mapping problem in [39]. A recursive bi-partitioning heuristic algorithm
is used to map the IP cores onto NoC tiles. The IP cores execute a real application
(MPEG4 decoder) and other several synthetic traffic patterns, all of them being described
through Communication Task Graphs. The topologies used in this research are: 2D mesh,
ring, Spidergon and crossbar. The Spidergon is a topology similar to a bidirectional ring
but, it also has links that connect the opposite nodes. Only deterministic routing is used
with all topologies (Dimension Order Routing). It is shown that the ring performs
generally worse than the other topologies because it has fewer channels. At the other
extreme is the crossbar, which performs better than all the considered topologies.
Spidergon is more scalable than a mesh. An interesting result is that for the MPEG4
application, the crossbar and mesh topologies behave worse than Spidergon and even
than the ring. The metric considered in this paper is network throughput.

2.5 Research Problems
Marculescu et al. [3] identified the following major research problems in the field of
Networks-on-Chip:

1. traffic modeling and benchmarking;
2. application scheduling;
3. application mapping;
4. routing;
5. switching;
6. Quality of Service (QoS) and congestion control;
7. power and thermal management;

Network-on-Chip Architectures

18

8. reliability and fault tolerance;
9. topology design;
10. router design;
11. network channel design;
12. floorplanning and layout design;
13. clocking and power distribution;
14. analysis and simulation and
15. prototyping, testing and verification.

These NoC research problems determine a very complex and difficult to explore design
space, which has four dimensions: application characterization, communication
paradigm, communication infrastructure and analysis and solution evaluation.

Application characterization means identifying the target applications and their
associated traffic patterns, and performing application mapping and scheduling. Traffic
modeling and benchmarking determines effective architectures, and application
partitioning allows the optimization of the NoC performance and power consumption.
The following three research problems belong to the application characterization
category: traffic modeling and benchmarking, application mapping and application
scheduling. This thesis focuses on the application mapping problem, which will be
presented in Chapter 3. There we will also briefly describe the scheduling problem by
showing how it interacts with the mapping problem.

The communication paradigm for Network-on-Chips can be improved by
knowing the application mapping and traffic characteristics. The effectiveness of the NoC
communication infrastructure depends on the routing and switching algorithms, Quality
of Service and congestion control, power and thermal management, and techniques for
increased reliability and fault tolerance.

The communication infrastructure is influenced by topology, router, channel and
clocking strategies that can be used for the NoC design. Using a global clock becomes
difficult due to smaller process geometries, larger wire delays and higher levels of
integration of multiple cores on a chip. Also, the design of the floorplan and layout of the
network architecture becomes mandatory for irregular networks (in terms of topology and
tiles).

Finally, Network-on-Chip evaluation and validation are necessary steps for
ensuring NoC’s compliance with the initial specifications.

2.6 Summary
This chapter presented a theoretical background for Network-on-Chip architectures. They
offer the scalability that multicores and manycores require but, they have the big
disadvantage of being resource constrained. As we showed, there are many research
problems concerning NoC designs. One of them is Network-on-Chip application
mapping. This is the main topic of this thesis and we introduce it in the next chapter.

The theory presented in this chapter and in Chapter 3 is strictly subordinated to
the scope and objectives of this PhD thesis. In other words, we did not intend a text book
like, exhaustive presentation, and we also do not claim a general valid rigor.

“The greater the difficulty, the more the glory in surmounting it.”

Epicurus

19

3 Network-on-Chip Application Mapping

In the previous chapter we showed that the Network-on-Chip research field deals with
fifteen major problems. We will focus next only on one of them, namely Network-on-
Chip application mapping.
 We begin by defining the Network-on-Chip application problem and by showing
that it is an NP-hard problem. Then we show this problem is directly connected to other
two NoC research problems: scheduling and routing. We present the similarities between
scheduling and mapping and we introduce two state of the art NoC scheduling
algorithms.
 We then propose a taxonomy for Network-on-Chip application mapping
algorithms and we describe some of the state of the art algorithms for NoC mapping.

3.1 The Network-on-Chip Application Mapping Problem
The design flow of a Network-on-Chip architecture for a specific application implies the
following three major steps [40]:

1. dividing the application into a graph of concurrent tasks (threads);
2. assigning and scheduling the application tasks to the available IP cores;
3. mapping each IP to a NoC tile, so that the metrics of interest are optimized.

The Network-on-Chip application mapping problem was formulated in [40] as the

topological placement of the IPs onto the on-chip tiles. It is an instance of the quadratic
assignment problem, which is proven to be an NP-hard problem [41]. The search space
increases factorially with the system size. For example, a NoC with 8x8 tiles theoretically
allows 64! mappings. Theoretically, mapping N IP cores onto M network nodes (MN ≤)

implies
)!(

!

NM

M

−
 possible core arrangements on the NoC nodes. When the number of IP

cores is identical to the number of network nodes (MN =), the number of possible
mappings becomes!M . This is therefore a permutation, combinatorial, problem. It
directly affects NoC’s performance in terms of latency, throughput, power consumption,
energy etc. This is because typical network metrics like latency and power are directly
proportional to distance.

A typical mapping cost function [42] is:

∑∑
≤≤

>−
∈

⋅==∈
Nji

ji
Ll

l jiDistbwBWPCost
,1

)],([)(π , where π is a particular mapping

from P, the set of all possible mappings. L is the set of NoC links which are used by the
application. BWl is the bandwidth delivered over link l. Dist (i , j) is the distance between
nodes i and j (hop count) and bwi->j is the bandwidth required by node i for
communicating its data to node j.
Consider for example the following two mappings π1 and π2. They consist of six
processing elements placed onto a 2D mesh NoC. PE2 communicates 30 bits/s to PE6
and PE4 100 bits/s to PE3. We are interested to evaluate the two mappings using the
above cost function.

Network-on-Chip Application Mapping

20

Fig. 10 Example of two mappings π1 and π2

For the first mapping, we have:

3603100230)(

)(100)(30)(

)()()()()(

1

34621

343462621

=⋅+⋅=
→⋅+→⋅=

→⋅→+→⋅→=

π
π
π

Cost

PEPEDistPEPEDistCost

PEPEDistPEPEbwPEPEDistPEPEbwCost

Similarly, for the second mapping we get: 2602100230)(2 =⋅+⋅=πCost . Notice that the
only difference between the two mappings is the placement of PE4 and PE5. In the
second mapping, PE4 is closer to PE3. Because of this, given the above conditions,
mapping π2 is better than mapping π1.

In the field of embedded systems, an application is typically described through a
Communication Task Graph (CTG). A CTG is defined in [43] as a directed acyclic
graph,),('' DTGG = , where each vertex, Tt i ∈ , is a an application task (a computational

module in the application). A task typically has assigned to it information like: execution
time on every type of Processing Element (PE) available for the NoC, energy
consumption (when assigned to a certain PE), task deadline (the time until the task
associated with the CTG node must complete its execution [44]), etc. A directed arc
between it and jt , is noted as Dd ji ∈, and has a value associated to it, which represents

the communication volume ()(, jidv , usually expressed in bits) exchanged between tasks

it and jt . Each arc shows both data and control dependencies. A data dependency marks

that there is a communication between the two tasks (it and jt) [45]. A control

dependency indicates that a task cannot be executed before its predecessor tasks are not
completely executed [45]. Thus, a data dependency is basically an undirected arc between
two tasks. When such an arc is present between two tasks, it means that the two tasks are
communicating. When the arc is directed, the arc’s arrow shows a control dependency
between the two tasks.

Note that a CTG is defined as an acyclic directed graph. However, in reality, the
tasks of an application may exhibit a communication pattern which creates loops. Loops
are not usually modeled with a CTG because of real-time considerations. For hard real-
time applications, unbounded loops are avoided because they do not allow bounds on
graph execution times. It is not possible to guarantee that the worst-case communication
volume path can be executed under the specified deadline. It is preferred that deadlines
can be assigned to tasks and a CTG typically has a period attached to it. The CTG can
therefore be reiterated after a certain amount of time [46].

The Directed Acyclic Graph (DAG) model of a parallel program is used in [47] to
address the scheduling problem. In our humble opinion, the Network-on-Chip research

Network-on-Chip Application Mapping

21

community adopted the DAG model, from the scheduling research area, with the name of
Communication Task Graph.

A task is defined in [47] as a set of instructions that are executed sequentially, on
the same processor, without preemption. The task is a node in the DAG. It may have a
weight attached to it, which represents the computational cost. However, a CTG does not
weight the nodes because it is only communication oriented.

The DAG arcs model the communication messages and the precedence
constraints between tasks. The arcs are weighted with communication costs. If two
communicating tasks are assigned to the same processor, their communication cost will
be neglected. The precedence constraints are what make the graph to be directed. They
show how communication flows among tasks. A node is not allowed to start its execution
until it receives all the messages from its parent nodes.

Program loops cannot be explicitly represented using the DAG model.
Conditional branches are not included as well. According to [47], including loops and
branches in the DAG model is an implicitly difficult problem. Additionally, many
numerical applications (e.g.: Fast Fourier Transform) contain loops with a number of
iterations known at compile time. For such programs, techniques like loop unrolling [6]
can be applied. This way, one or more loop iterations can form a task. Also, large classes
of numerical applications and data-flow programs have very few conditional branches.

Scheduling a DAG with probabilistic branches and loops was addressed in [48].
Each graph arc has a probability that the child node will be executed immediately after
the parent node. Scheduling DAGs with conditional branches is made in [49] by using,
beside the precedence graph, a branch graph, too. Although DAG models that deal with
loops and/or conditional branches have been proposed, the Network-on-Chip research
community adopted the simple DAG model, without loops and conditional branches.
Therefore, a CTG does not model program loops nor branches. It focuses on the
communications among the tasks of data-flow programs.

The acyclic property of a Communication Task Graph is dropped at a coarser
level, denoted by an Application Characterization Graph (APCG). An APCG models
an application at the level of Intellectual Property (IP) cores and it is defined in [43] as: a
directed graph,),(ACGG = , where each vertex Cci ∈ represents an IP core and each

directed arc, Aa ji ∈, , characterizes the communication between coresic and jc . This

may be application specific information like communication volume. It can also be
design constraints, like communication bandwidth, area of IP cores, etc. As in the case of
a CTG, a directed arc of an APCG shows data and control dependencies. But, compared
to a CTG, an APCG allows cycles. For example, we can have a bidirectional
communication between two cores. Note that loops are still not desired in APCGs
because of real-time constraints. It is often preferred to transform a directed graph into a
Directed Acyclic Graph (DAG) [50]. This allows worst-case execution time analysis,
which makes the APCG usable in hard real-time systems as well.

An Application Characterization Graph is obtained from a Communication Task
Graph by scheduling the tasks on available IP cores.

Having the definitions for a CTG and an APCG, we can now illustrate the
application mapping problem for NoCs using the following figure.

Network-on-Chip Application Mapping

22

Fig. 11 The Network-on-Chip application mapping problem

Obviously, the NP-hard problem cannot be solved by means of exhaustive search.
Heuristic algorithms [51] are employed with the purpose of finding the best topological
placement of cores onto network nodes. The objective is to optimize network latency, its
energy consumption, etc. Multiple objectives may be followed at the same time, too.
 We show next that Network-on-Chip application mapping interacts directly with
other two NoC research problems (see section 2.5): routing and application scheduling.

3.1.1 Application Mapping and Routing Problems
While a good mapping of cores onto network nodes can lead to energy savings, the routes
used by the cores to communicate can have a great impact on the NoC’s performance.
The best topological placement of cores onto nodes is not enough to account for the
performance of the network. The next figure shows an example where two minimal
routes are available between the top-left and bottom-right tiles of a 2D mesh NoC.
Choosing the proper route can increase the performance of the network.

Network-on-Chip Application Mapping

23

Fig. 12 The application mapping and routing problems

This shows that the application mapping problem is tightly connected to the routing
problem. Usually it is not necessarily to generate routing paths when placing IP cores
onto NoC tiles. A mapping algorithm may simply consider that the NoC architecture is
using a particular routing protocol (like XY routing in [40]). However, routing
information can help at obtaining a better mapping [52].

3.1.2 Application Mapping and Scheduling Problems
Before mapping the IP cores onto the Network-on-Chip tiles, the application’s tasks and
communication transactions must be assigned to the NoC resources. Additionally, the
tasks’ execution order must be established. This is called the scheduling problem for
NoC architectures [53] and is an NP-hard problem as well. It has a considerable influence
on the energy consumed by the IP cores when computing, due to their heterogeneity. For
example, a DSP core may consume less energy than a general purpose processor when
computing a Fast Fourier Transform. Also, the communication energy consumption of
the NoC architecture is affected by the task assignment (because of the routing paths).

Therefore, the application mapping problem is connected to the scheduling and
routing problems. The following figure illustrates this fact.

Network-on-Chip Application Mapping

24

Fig. 13 The scheduling, application mapping and routing problems

An application is described through its Communication Task Graph. A scheduling
algorithm is then used to assign application tasks (threads) to available IP cores and to
specify their order of execution. After the scheduling step, the Application
Characterization Graph is obtained. Then, using a mapping algorithm (which may
generate the routing function as well), the IP cores are topologically placed onto the NoC
tiles.
 We observe that both scheduling and mapping algorithms for Networks-on-Chip
have similar objectives. Increasing the performance and decreasing the energy
consumption of a NoC, for a particular application, are two optimizations typically made
by such algorithms.

Ideally, both scheduling and mapping problems should be treated together. In
other words “scheduling” means mapping the application’s tasks onto the available IP
cores, and “mapping” means mapping the IP cores onto the available NoC nodes.
Therefore, both scheduling and mapping problems deal with application mapping onto a
Network-on-Chip.

Nevertheless, because of the NP-hard complexity of the problem, mapping
applications onto NoCs is divided in a two-step process: scheduling, followed by
mapping.

We present next a two-step genetic algorithm which deals with the scheduling
problem for Networks-on-Chip. An approach that deals with both scheduling and
mapping problems is proposed in [53] where an energy-aware algorithm is presented.
However, because they are both NP-hard problems, our main focus will be on the
mapping problem. Therefore, we continue by proposing a classification of application
mapping algorithms. Then, we present several application mapping algorithms, classified
according to our taxonomy. We present here only an overview of the algorithms. We give
detailed descriptions in [54].

3.1.3 Scheduling Algorithms for Network-on-Chip Arc hitectures

3.1.3.1 Two-step, Single Objective Delay-Aware Genetic Algorithm
A two-step genetic algorithm is used in [55] for assigning the tasks of an application to
the IP cores placed onto a NoC that uses a 2D mesh topology. It is assumed that IP cores

Network-on-Chip Application Mapping

25

are already associated to the network nodes. Hence, the mapping problem is not
considered. Techniques for task scheduling are also employed. The two-step genetic
algorithm has a single objective: map the tasks of an application onto network nodes so
that the overall execution time is minimized. The main steps of this algorithm are
presented next.
In the first step, the application tasks are assigned
to classes of IP cores. In the second step, the tasks
are assigned to the IP core (from the selected
class) which provides the highest performance.
The last step of the algorithm involves scheduling
techniques (like ASAP – As Soon As Possible, or
ALAP – As Late As Possible).
 The execution time is expressed through a
mathematical model developed for the estimation
of the delays from a 2D mesh Network-on-Chip
architecture. Three types of delays are identified
and used by the algorithm: system delay, edge
delay and average edge delay. The system delay
of a task graph represents the delay given by the
execution of its critical path. It has two
components: the execution time and the
communication time. The communication is
modeled initially at a coarser level, through the
average edge delay. Then, the edge delay is used
so that a finer level modeling of the
communication is used.
 Each of the two steps of this algorithm is a
genetic algorithm. The first genetic algorithm
computes the fitness as system delay, using the
average edge delay. Its output is an assignment of tasks to classes of IP cores. It is used as
input for the second genetic algorithm. This one computes the system delay using the
edge delay metric. Its output is an assignment of tasks to a specific IP core (from the
given IP core class).

Obviously, such a genetic algorithm could be made of only one step, by using
from the beginning the exact edge delay, instead of the average edge delay. However, the
authors argue that a single step genetic algorithm would be, either extremely slow, or it
would not provide good results in a reasonable amount of time.

3.1.3.2 Energy-Aware Scheduling
The Energy-Aware Scheduling (EAS) algorithm [53] statically schedules the tasks and
communication transactions of an application which is running on a Network-on-Chip
with heterogeneous Processing Elements (PEs). The tasks are scheduled for execution
under real-time constraints. The main idea is to give more slack (more time) to the tasks
which have a higher impact on the Network-on-Chip energy consumption and
performance. This algorithm is proposed for a NoC with an N X N 2D mesh topology,

CTG & NoC architecture

Task assignment to IP
groups (GA)

Task assignment to specific
IP from the chosen IP

group (GA)

Scheduling

Task scheduling
(ASAP/ALAP)

Fig. 14 Overview of the two-step, single
objective delay-aware genetic algorithm

Network-on-Chip Application Mapping

26

using XY routing. However, the authors claim that their algorithm can be adapted to any
NoC architecture.

The following analytical model is used for calculating the average energy

consumption for communicating a bit of data:
bitbit

ji

LhopsRhops
pp

bit EnEnE)1(, −+= .

The Processing Element pi sends one bit of data to PE pj, which passes through
nhops network nodes in order to reach its destination. The energy consumed by a router
and by a link is represented by

bitRE and
bitLE respectively.

 The algorithm has two major steps. The
first step allocates slack to all the tasks. A task
scheduling priority is computed based on its
execution time and the energy that a PE would
require for executing it.

The second step performs scheduling
hierarchically. Starting from the root task of the
CTG, each time the tasks that are considered for
scheduling are those for which the tasks they
depend on were previously scheduled. The
purpose is that each task has a minimum earlier
finish time less than its budgeted deadline. The
EAS algorithm works only with those two steps.
However, a third step is also employed so that the
number of deadline misses may be further
decreased.

Search and repair is a greedy approach
with two working modes: Local Task Swapping
(LTS) and Global Task Migration (GTM). The
purpose of the LTS part is to reduce the deadline
misses by scheduling the more critical tasks in
front of the more uncritical tasks. This task
reprioritization procedure is performed locally, at the level of each PE. Since the changes
performed in the LTS mode are local, the communication and computation energy of the
NoC are not affected.

The GTM part performs global changes. Such changes are required in the case of
heavily loaded PEs. A critical task is migrated to another PE, which is selected in the
order of its communication and computation energy consumption. Obviously, the GTM
mode affects communication and computation energy of the NoC. It can lead to
increasing the energy consumption but, the advantage is that deadline misses are reduced.

The performance of the EAS algorithm is compared to the one of an Earliest
Deadline First (EDF) scheduler. The Communication Task Graphs (which represent the
input of the algorithm) were obtained in three distinct ways: (1) randomly, using the
TGFF tool [46], (2) from the E3S benchmark suite [56] and (3) from two real-world
applications (an audio/video encoder and an audio/video decoder). Compared to EDF,
EAS achieves significant energy savings for all applications.

CTG & NoC architecture

Budget slack allocation

Level based scheduling

Mapping & Scheduling

Search and repair

Fig. 15 Overview of the Energy-Aware
Scheduling algorithm

Network-on-Chip Application Mapping

27

3.2 Taxonomy for the Application Mapping Algorithms
An application mapping algorithm takes into consideration the characteristics of the
application, and it has the purpose of finding the best placement of IP cores, onto the tiles
of the Network-on-Chip architecture. Obviously, the application mapping algorithm must
be aware of the NoC topology. The placement of the cores onto the network nodes can be
made before the application starts to be executed and it cannot be changed afterwards. We
call this type of mapping a static mapping. Obviously, the mapping process is iterative:
multiple mappings are generated until the optimum mapping is found but, in case of static
mapping, all the mappings are obtained before the application starts running. If the
mapping of cores changes while the application runs, we have a dynamic mapping. This
is typical for NoCs that are fault tolerant or application-adaptive. This kind of mapping
could also lead to an increase of network performance and/or to a decrease in power
consumption but, it is more difficult to implement (than static mapping is).

The factorial number of possible mappings can be decreased because it is very
likely that not every mapping is feasible. This is because of the communication demands
of the application and the hardware limitations of the underlying Network-on-Chip
architecture. For example, consider that we have two communicating IP cores which
require a bandwidth of B bytes/s. The NoC architecture may have some links that support
such high bandwidth and other links that do not support it. In such a case, mapping the
two IP cores so that they would require communicating over links that do not support the
required bandwidth would generate an impractical mapping. The bandwidth requirement
is an example of a mapping constraint. We define the mapping constraint (MC) as a
restriction, derived from the requirements of the application and the characteristics of the
Network-on-Chip architecture, imposed when associating IP cores to network nodes. Any
mapping constraint may limit the size of the search space. An application mapping
algorithm may or may not use one or more mapping constraints but, usually this should
be an obvious thing to do because it would speed up the mapping algorithm. The
difficulty of using a mapping constraint consists of having the means to evaluate if a
mapping satisfies or not that constraint.

The application mapping algorithm explores the search tree of possible mappings
and tries to find the best mapping (for a certain application and NoC architecture). In
order to determine the best mapping, at least one optimization goal is required. Example
of optimization goals can be: network performance, communication energy, power
consumption, etc. Thus, a mapping algorithm may search for the best mappings by
considering a single objective or even multiple objectives.

As we showed in Section 3.1.1, the mapping problem is also closely related to the
routing problem. Any routing algorithm may be applied after the mapping has been done.
However, if the mapping algorithm is not routing aware, it is possible that the best
mapping does not actually provide the best network performance due to the fact that the
routing paths were not considered when applying the optimization goals to the possible
mappings. A mapping algorithm can thus, deal with identifying the routing paths for the
mapped IP cores as well. The routing function can be deterministic or adaptive. Also, it
should provide freedom from deadlock and livelock, and it may have other characteristics
like being minimal.
 To summarize, we have established that we have two types of application
mapping algorithms: static and dynamic. Any mapping algorithm, whether static or

Network-on-Chip Application Mapping

28

dynamic has at least one optimization goal (single-objective or multi-objective). It may
use (one or more) mapping constraints. Also, it may determine the routing function,
during mapping. The routing can be deterministic or adaptive and it can have other
properties like freedom form deadlock and others. We have thus four classification
criteria:

static single objective mapping type
dynamic

optimization
goals multiple objective

with one or more
mapping constraints

generates routes
while mapping mapping

constraints without any mapping
constraint

routing
awareness does not generate

routes

An application mapping algorithm can be static or dynamic. Either static or dynamic, the
mapping algorithm can have a single objective (SO) or multiple objectives (MO) to
optimize. Characteristics like using mapping constraints and being routing aware (RA)
are optional and can be applied to any type of mapping algorithm (making it thus more
specific).
 Finally, we note
that in [57], where the
scheduling problem is also
considered, the algorithms
are classified as integrated
or separated based on
whether they treat NoC
mapping and scheduling
together or not. We
consider this to be good
classification criteria when
including application
scheduling, too. The
algorithms presented in the above cited paper are for NoCs and for bus-based
multiprocessor embedded systems. The NoC algorithms are classified only by whether
they have routing awareness or not. The algorithms for bus-based systems are classified
according to their optimization goal (energy minimization, handling soft real time
constraints or memory awareness). Issues like mapping type and mapping constraints are
also mentioned but they are not used as classification criteria. The single/multi objective
(optimization goals) criterion is not included. Therefore, we consider our proposed
taxonomy to be in accordance with the one from [57] but, more general and suitable.

3.3 Mapping Algorithms for Network-on-Chip Architectures
The following section briefly presents several of the most known Network-on-Chip
application mapping algorithms available in literature. This is by far not an exhaustive
list. A survey of algorithms for NoC application mapping and scheduling is available in
[57]. It presents and compares some of the algorithms we present here and other
algorithms, too. Another good overview paper about the NoC application problem is [42].

MAPPING CONSTRAINTS

M
O

S
O

STATIC

DYNAMIC

RA

Fig. 16 Taxonomy for application mapping algorithms

Network-on-Chip Application Mapping

29

3.3.1 Simulated Annealing
Simulating Annealing (SA) [58] is a tree search technique that combines hill climbing
[59] with a random walk in order to yield efficiency and also completeness. The hill
climbing algorithm never makes downhill moves so it is guaranteed to be incomplete
(because it can get stuck in a local maximum). On the other hand, moving to a successor
tree node, chosen randomly from all the possible successors, is very inefficient but more
complete. As we will see next, in the end, Simulated Annealing reduces to hill climbing.

The idea behind this algorithm comes from metallurgy, where annealing is the
process used to temper or harden metals and glass by heating them to a high temperature
and then gradually cooling them, thus allowing the material to coalesce into a low-energy
crystalline state.

An analogy for simulated annealing could be made with dropping a ball on a non-
uniform surface. We would like the ball to end up in the deepest place from our surface
but, most likely, the ball will stop in a place which is deep but it is not the deepest one. If
we shake the surface hard enough we will determine the ball to exit from the local
minimum. However, we must not shake the surface very hard or it might leave the global
minimum, too. The simulated annealing
algorithm starts by shaking hard (i.e., at a high
temperature) and then gradually reduce the
intensity of the shaking (i.e., lower the
temperature).

Simulated annealing was proposed as an
energy-aware mapping algorithm in [40], where
it was compared to a branch and bound
algorithm (see section 3.3.2). In [52], SA was
extended so that it is also performance-aware.
The analytical energy model presented in
section 3.1.3.2 was used.

The advantages of Simulated Annealing
are given by its ease of implementation, its
applicability to many combinatorial
optimization problems and the ability to give
reasonably good solutions [60]. However, the
parameters of the algorithm (like temperature)
must be carefully chosen because SA can easily
run for very long times until it gives a solution. It is shown in [40] that SA becomes
practically infeasible as the problem size increases. However, the simulated annealing
from [40] is a general implementation. Using domain- knowledge could potentially make
SA faster and thus feasible.

3.3.2 Branch and Bound
A Branch and Bound (BB) [51] algorithm is proposed in [40] for the mapping of IPs onto
the NoC tiles. The mapping is energy-aware (the energy model from section 3.1.3.2 is
used), the purpose being to optimize the total communication energy of the Network-on-
Chip, while bandwidth constraints are satisfied. The algorithm is introduced for a 2D
mesh network with n x n tiles, which uses the deterministic XY routing algorithm.

APCG & NoC architecture

Compare random
mappings. Accept better
ones and with a certain

probability, worse ones too.

Decrease temperature

Mapping

Fig. 17 Overview of the Simulated
Annealing algorithm

Network-on-Chip Application Mapping

30

The algorithm builds a search tree where each node contains a (partial) mapping.
Basically, the node from the search tree is an
array. Each element from the array is an IP core.
A value set for an element i from the array means
that the NoC node identified by that value is
assigned to the IP core with identifier i. Branch
and Bound has two major steps which are
iterated:

- branch: an unexpanded node is selected
from the search tree; then, the next
unmapped IP core (given by the selected
node) is enumeratively assigned to the
unoccupied tiles, and the child nodes are
generated;

- bound: the new child node is checked if it
is legal (i.e. it satisfies bandwidth
constraints) and also if it can generate the
best leaf nodes. If not, the node is not
expanded further.

Each node from the search tree has a cost attached to it. This cost represents the energy
necessary for the communication among the already mapped IPs. One can view this
number as the cost of the mapping held by the node. The cost of a child node cannot be
less than the cost of its parent node because the child contains one more IP core mapped
to the NoC (and obviously this IP core produces extra network traffic). Also, a node is
considered legal, if and only if the bandwidth requirements between the currently mapped
IPs are met. When an internal node is found illegal, the sub-tree determined by it is
obviously illegal and thus it does not need to be explored. Note that this approach does
not lead to sub-optimality because bandwidth requirements are NoC architectural
constraints: it is architecturally not allowed to violate them.

Besides checking if a node is legal, deciding whether or not to expand it requires
the following two metrics, which are assigned to each node (from the search tree):

- Upper Bound Cost (UBC): the value of a node that is no less than the minimum
cost of its legal descendant leaf nodes;

- Lower Bound Cost (LBC): the lowest cost of a node that its descendant leaf
nodes can possibly achieve.

Thus, one may view the UBC as a metric that informs us which could be the highest cost
of the best mapping that may result from the considered (internal) node. The LBC tells us
which could be the lowest cost of the best mapping that may result from the considered
(internal) node. Based on these observations, the following rule is inferred: a node is not
expanded when its cost or its LBC is higher than the lowest UBC that was already found
in the whole search tree.
 The speed of the Branch and Bound algorithm depends on the way UBC and LBC
are computed.
 The UBC of a node is assigned the cost of the descendant legal leaf node with the
smallest cost. A greedy method, which maps the remaining IPs to unoccupied tiles, is
used to determine the leaf node with the smallest cost. At each step, the method takes the

APCG & NoC architecture

Branch

Bound

Mapping

Fig. 18 Overview of the Branch and
Bound algorithm

Network-on-Chip Application Mapping

31

next unmapped IP with the highest communication demand, and places it to the
topological location that is the closest to the ideal topological location (the placement
depends on what tiles are still unoccupied). The ideal topological location is considered
the one which best facilitates the communication of the IP to be mapped with the already
mapped IPs (the communication volume between IPs is considered to be known). After
the IP is placed onto the best unoccupied location, its minimum cost can be determined.
 The performance of UBC computation is thus determined by the speed of the
greedy mapping. The greedy method effectively tries to do a quick mapping so that it
may find out what could be the cost of the best mapping that may be achieved starting
from the considered internal node of the search tree. The accuracy of the UBC value
strongly depends on the accuracy of the greedy mapping.
 The LBC of a node is computed as the sum of three communication costs, which
are generated by communications between: mapped IPs, unmapped IPs and mapped and
unmapped IPs. LBC is essentially the cost of an ideal mapping. This is because each
unmapped core is considered to be placed so that the minimum energy is consumed but,
multiple cores could be placed onto the same node. So, LBC means: just place all the
unmapped cores as best as possible; do not consider that a node gets occupied, i.e. that
another core may no longer be placed there.
 Having a way to compute the UBC and LBC of each node, the branch and bound
algorithm is able to get closer and faster to the optimal solution (compared to Simulated
Annealing). However, because the mapping problem is an NP-hard problem, more
heuristics are used to significantly reduce the computational time and to provide a near-
optimal solution.
 To speedup the algorithm, the following techniques are used:

- IP ordering: IPs are mapped in the order given by their communication demand
(higher communication demand IPs are mapped earlier);

- Priority Queue (PQ): the nodes are branched in the order given by their cost
(smallest cost nodes are branched first);

- Symmetry exploitation: the first core is placed only onto a part of the NoC nodes
because the 2D mesh topology is symmetric (the rest of the nodes are just mirror
nodes).

The IP ordering heuristic is useful for applications which do not have a uniform traffic
pattern (obviously, in case of uniform traffic, no communication based ordering is
possible). Placing the nodes with higher communication demand first reduces the number
of nodes to be expanded.
The Priority Queue technique allows decreasing the minimum UBC. This also reduces
the number of nodes to be expanded.

When the length of the Priority Queue becomes full, only certain child nodes will
be further accepted. If the currently expanding node has the minimal UBC, then all its
child nodes will be evaluated for insertion into the queue. Otherwise, only the child node
with the lowest cost and the child generated by the greedy mapping (for UBC
computation) will be evaluated for insertion in the queue.
 It is shown that this branch and bound algorithm is tens of times faster than the
general simulated annealing approach. The energy consumption determined by the
mappings obtained with branch and bound is not much higher than that of general
simulated annealing’s mappings.

Network-on-Chip Application Mapping

32

 Although a 2D mesh with XY routing was used, this algorithm can be adapted to
any network topology, with any static routing mechanism.

3.3.2.1 Branch and Bound with Routing
The Branch and Bound algorithm (previously
presented) was further extended in [52] so that
the objective is not just to perform a mapping
which minimizes the communication energy but,
also to do a performance aware mapping by
generating a deadlock-free deterministic routing
function. The authors argue that the routing for
NoCs should be deterministic, deadlock-free,
minimal and wormhole-based. This is mainly
because of two NoC architecture characteristics:
resource limitation and stringent latency
requirements.
As it can be seen in the Figure 19, the same two
steps (branch and bound) are iteratively
performed. However, in the branch step routing
paths are also generated.

This version of the Branch and Bound
algorithm was also applied on a NoC with a 2D mesh topology. Anyway, the algorithm
can be used with any network topology.

This routing-aware version of the Branch and Bound algorithm is better than the
first one because it addresses the mapping problem from a more holistic perspective.
However, it has the disadvantage of a higher computational time.

Compared to the original implementation of the Branch and Bound algorithm, the
search tree nodes also contain a path allocation table (PAT). This table stores the routing
paths for the traffic among the occupied tiles of the network, and it is generated
automatically (so that they are minimal, deadlock- and livelock-free).

Deadlock freedom is ensured by allowing only certain turns for each routing path.
For this purpose, a Legal Turn Set (LTS) is used. The authors build their LTS by using the
legal turns from the west-first [30] and odd-even [31] routing algorithms.

3.3.2.2 Conclusions to branch and bound
The ideal branch and bound algorithm has the advantage of being able to find the optimal
solution. However, this might easily require a prohibitive time because the size of the
search tree can increase exponentially. Not expanding the illegal nodes significantly
reduces the search space. However, this is not enough to obtain a mapping algorithm that
is fast enough. The two branch and bound algorithms employ several heuristics
(prioritization of IP cores and nodes to be expanded, topology symmetry exploitation) in
order to be able to reach a near optimal mapping fast enough.

The quality of the solutions given by the two mapping algorithms is strongly
dependent on the energy model used and on how UBC and LBC are computed.

The energy model is a simple analytical model. At least one disadvantage of this
model is that it is static: it may not be used with adaptive routing.

APCG & NoC architecture

Branch & build routing
table

Bound

Mapping

Fig. 19 Overview of the Branch and
Bound algorithm with routing

Network-on-Chip Application Mapping

33

UBC computation relies on a greedy mapping technique that quickly finds a
mapping by trying to place each core left unmapped on a NoC node that is still
unoccupied so that the energy consumption is minimal. Making local optimal decisions
does not necessarily lead to a global optimum. The greedy approach might not be the
most suitable one for UBC calculation. However, it has the advantage of speed.

LBC is also not accurately computed. The approach is unrealistic because a core
is put in the best place of the NoC without considering if a core was already mapped onto
that NoC node. Once again, the approach is fast but it does not provide the tightest LBC.

Routing paths are also created fast. They are deadlock and livelock free but, it is
hard to say they are optimal since network dynamics are not accounted for. Nevertheless,
it is better to generate such routes rather than simply assuming a NoC with XY routing.

Compared to simulated annealing, the sole advantage of a branch and bound
approach is speed. In terms of energy, the improvements given by branch and bound are
almost negligible.

Branch and bound must make a tradeoff between huge memory consumption
requirements and the amount of the pruned part of the search tree.

3.3.3 NMAP
NMAP [61] is another algorithm for mapping cores onto a NoC architecture with a 2D
mesh topology. Similar to the branch and bound algorithm [40], NMAP performs the
mapping by satisfying bandwidth constraints but,
the algorithm is not energy-aware. However, it
takes into consideration the traffic splitting
among various network paths (multi-path
routing). Compared to single-path deterministic
routing, multi-path routing can further help at
satisfying the bandwidth constraints by balancing
the traffic across multiple network links.

The version of the NMAP algorithm
which works with single minimum-path routing
has three major phases.

In the initialization phase a first mapping
is computed. This initial mapping is performed by
mapping the cores in the order given by their
communication demand. The core which has the
maximum communication volume is mapped
onto one of the nodes of the mesh that has a
maximum number of neighbors. Then, the rest of
the cores are mapped one by one, in the order
given by their communication volume with the
already mapped cores: each core is put onto an
available node so that the communication cost
with the already mapped cores is minimized.

The second phase of the algorithm
involves minimum routing path computations.
The pairs of communicating cores are sorted in decreasing order, by the value of their

APCG & NoC architecture

Initial mapping (greedy, by
communication demand)

Single minimum-path
routing

Mapping

Pair-wise swapping of
cores

Fig. 20 Overview of the NMAP algorithm
with single minimum-path routing

Network-on-Chip Application Mapping

34

communication flows. For each pair of cores, a quadrant is formed. This marks the place
from the topology where the shortest path between two cores exits. The minimum path is
obtained by applying Dijkstra’s shortest path algorithm. Each path will have a weight
assigned. This weight is given by the communication bandwidth sum of all the cores
which use that path. After the routing between all core pairs is done, the communication
cost is computed for each pair, where bandwidth constraints are satisfied.

The best mapping is found by pair-swapping core mappings and iteratively
invoking step two of the algorithm until the best mapping is found.

The NMAP algorithm with multi path-routing allows the splitting of the traffic
across multiple paths, for each pair of cores. The first phase of the algorithm
(initialization) is the same like in the case of the single-path version. Basically, the
difference consists on the fact the traffic can be split on multiple paths.

The authors of NMAP show that the average latency is higher when using
minimum single-path routing (as compared to when multiple paths are used). This is
because the network links are more congested when single paths are used for routing. The
effect is emphasized when wormhole switching is used. In this case, entire paths can be
blocked, which leads to a significant decrease of network bandwidth.

NMAP is essentially a greedy mapping algorithm. It is well-known that such
techniques perform locally optimal choices, hoping that the global optimum will be
found. Obviously, a greedy approach may easily fall in a local minimum4, failing to reach
the best solution (global minimum). Otherwise, NMAP emphasizes more the importance
of coupling application mapping to routing. It can generate either single path or multi
path routes.

3.3.4 Algorithm for Mesh Based On-Chip Interconnect ion
Architectures

Both branch and bound [40] and NMAP [61]
algorithms address the mapping problem for 2D
mesh NoCs, by considering bandwidth
constraints. The mapping algorithm presented in
[62] considers, besides bandwidth constraints,
latency constraints as well. The objective of the
algorithm is to achieve a good trade-off between
placing closer the cores which have high
bandwidth traffic, so that the communication
energy is minimized, and placing closer the cores
with tight latencies in order to satisfy the
performance constraints. Bandwidth and latency
constraints can be viewed as mutually
independent. For example, a cache miss does not
require high bandwidth but, it needs a small
latency.
 The energy-latency trade-off is achieved
by a two-stage algorithm for Mesh based On-

4 Local minimum for a minimization problem, local maximum for a maximization problem

APCG & NoC architecture

Core to router mapping

Mapping

Route Generation (RG)

Fig. 21 Overview of the MOCA algorithm

Network-on-Chip Application Mapping

35

Chip interconnection Architectures (MOCA).
In the first stage, a mapping of the cores on the mesh NoC is generated. In the

second stage, the MOCA algorithm creates a custom route for each communication so
that bandwidth and latency constraints are satisfied.

The placement of the cores is determined by recursively invoking a method
(Fiduccia and Mattheyses [63]) that solves the graph partitioning problem for the APCG.
The graph partitioning problem consists in dividing the graph into k disjoint parts with
(approximately) equal size and having a minimum cumulative weight of the edges which
cross partitions. The edges of the graph are weighted by considering bandwidth and
latency constraints. The communications which require low bandwidth but, tight latency
constrains are given priority over the communications with high bandwidth but, relaxed
latency constraints. The reason for this approach is that bandwidth constraints can be
fulfilled by finding alternative routing paths, whereas latency constraints cannot be
satisfied in this way.
The graph partitioning process uses a slicing tree. The non-leaf nodes of this slicing tree
are the directions of each cut (horizontal - H, or vertical - V) and its leaf nodes are the
cores. Dummy nodes are used to track the communication traffic across partitions. The
purpose of this kind of nodes is to determine the connected nodes with large weights to
be placed close to each other. Each time the APCG is divided, the graph corresponding to
the NoC topology is also cut. Through a divide and conquer approach, the APCG is split
into approximately equally weighting parts. The NoC topology graph is split in the same
way. Each APCG subgraph is assigned a NoC topology subgraph.

The second phase of the MOCA algorithm uses the slicing tree to generate a
unique route for each communication. This phase has two sub-phases. The first one
generates a minimal route for each communication flow by traversing the slicing tree.
The second one searches for a minimal route for a communication flow that was not
successfully routed in the first phase (because of bandwidth and latency constraints). This
hierarchical routing technique falls back to Dijkstra’s shortest path algorithm when it
cannot find a proper route. Bandwidth constraints are however respected in this case as
well, by restricting Dijkstra’s shortest path algorithm from using the links which would
violate them.

The authors of the MOCA algorithm show that their algorithm has a lower
complexity than that of the NMAP algorithm [61]. However, the solutions given by the
MOCA algorithm could have deadlocks. To solve this problem, the authors suggest a
post-processing step which introduces virtual channels at specific routers.

This algorithm is essentially an application of the Fiduccia and Mattheyses [63]
algorithm for graph partitioning. Although this algorithm has a linear execution time, it
cuts the APCG so that the resulted subgraphs are balanced in terms of the metrics of
interest. Obviously, this balancing is approximate. This means that the gain obtained with
a cut, as compared with the gain obtained with another cut, is inexact. More than this, a
cut loses information because it eliminates graph edges. Thus, such approach works with
local information and not with global information. This method is therefore fast but, it
may easily find a suboptimal solution.

3.3.5 Multi-objective Genetic Algorithm
All the algorithms presented above deal with the mapping problem for NoC architectures

Network-on-Chip Application Mapping

36

in a static manner. They do not take into consideration the dynamic effects of the
Network-on-Chip. Also, those algorithms are capable of providing mappings by
optimizing a single objective, like energy, in [40], or performance, in [61].

In [64] it is presented a genetic algorithm which performs a multi-objective
(power and performance) exploration of the mapping space of Networks-on-Chip. The
NoC uses a 2D mesh topology with Dimension Order Routing and wormhole switching.
The proposed algorithm provides not just a single solution (mapping), but rather a set of
solutions (mappings). Each solution is a Pareto mapping in the sense that it gives a
different tradeoff between the objectives which are to be optimized: power and
performance. The authors motivate their multi-objective approach of the mapping
problem by showing that it is possible that a certain mapping proves to be the best in
terms of power but not in terms of performance as well (or vice versa).

The exploration of the mapping space is made in two steps. First, a NoC simulator
is used to evaluate (in terms of performance and power) the available mappings. The
evaluated mappings are used as inputs for the second phase of the algorithm, which
generates the next mappings to be evaluated. For the second step of the exploration
process, the SPEA2 [65] Genetic Algorithm is used.

This cited paper shows the potential of using well known and mature genetic
algorithms like SPEA2 for a multi-objective Network-on-Chip application mapping. It
would be interesting to evaluate other such algorithms, too. Not only genetic algorithms
but, other evolutionary techniques might prove useful, as well. As it is shown in this
paper, the success of such algorithms is given by suitable genetic operators (for the NoC
application mapping problem).

3.3.6 Multi-objective Genetic Algorithm for Mapping and Routing
A multi-objective approach for the mapping problem is also proposed in [66]. Compared
to the work from [64], this work addresses both mapping and routing Network-on-Chip
problems, like it is done, for example, in [52]. Bandwidth constraints are also considered.
The purpose is to obtain the Pareto set of mappings and routing functions so that the
average communication delay is minimized and the fault tolerance capabilities of the
network are maximized. Simulations performed on both synthetic and real traffic patterns
show that a multi-objective optimization of the NoC gives better results than a sequential
optimization.

3.4 Summary
This chapter introduced the NP-hard problem of Network-on-Chip application mapping.
This is a permutation problem, which deals with the topological placement of IP cores
onto Network-on-Chip tiles. We showed how it is directly connected to application
scheduling and routing. Application scheduling involves assigning tasks to processors; it
is also an NP-hard mapping problem. We presented two algorithms that perform
application scheduling. One of them treats application scheduling and application
mapping together. However, because both of them are NP-hard problems, they are
usually treated separately by the research community [3].
 In this PhD thesis we approach solely the Network-on-Chip application mapping
problem. We introduced several state of the art algorithms that address our problem. We
classified them according to a taxonomy proposed by us.

"Whatever you can do, or dream you can, begin it.
Boldness has genius, power, magic in it."

Johann Wolfgang von Goethe

37

4 Designing a Unified Framework for the Evaluation
and Optimization of NoC Application Mapping

Algorithms

The NoC application mapping problem is addressed by the research community through
application mapping (heuristic) algorithms. As we have already shown in Chapter 3, these
algorithms consider the characteristics of both the application and NoC architecture.
However, currently, the existing application mapping algorithms are basically evaluated
only on 2D mesh topologies. But, they can be extended, to work with other network
topologies, too. These algorithms are evaluated only on some specific NoC designs and
also, their performance cannot be directly compared because a common evaluation
methodology is missing.

We propose a unified framework for the evaluation and optimization of Network-
on-Chip application mapping algorithms, called UniMap . Such a framework will allow a
better comparison of their performance. The framework will also be flexible so that many
NoC designs (e.g.: different network topologies) can be used for testing the performance
of the mapping algorithms. An overview of UniMap was published in [67], [68]. Our
framework is an open source project available under GPL v3 license for the research
community [69].

We have successfully used UniMap on our High Performance Computing (HPC)
System [70] from “Lucian Blaga” University of Sibiu, Romania . Our HPC currently
has 30 Intel Xeon E5405 homogenous quad cores (15 blades, 120 cores), operating at a
frequency of 2 GHz. This means a total of 120 Intel cores. This HPC system also
includes 4 IBM Cell Broadband Engine (Cell BE) processors (2 blades, 36 cores). The
IBM Cell is a heterogeneous multicore, consisting of a 64-bit dual thread PowerPC
(master) core plus 8 SIMD processors. These (slave) vectorial processors, called SPU
(Synergistic Processor Unit), are specialized for data intensive processing domains like
cryptography, media and scientific applications. The HPC allocates 4.84 GB of DRAM
memory for each two Intel quad cores and 7.85 GB of DRAM memory for each two IBM
Cell cores. This means a total of 88.3 GB of DRAM memory. The total storage capacity
is approximately 1.2 TB. We also performed simulations with UniMap on the HPC
system from Politehnica University of Bucharest, Romania. UniMap is written in Java5
which makes it highly portable and feasible to be further improved with concurrent
programming characteristics.

We present in the following sections some related work which sustains our
approach. Then, we show the design of our unified framework and propose some
solutions for the major problems encountered.

4.1 Related Work
SUNMAP [71] is a tool for automatically selecting the best Network-on-Chip topology
for a given application. It uses a generalized version of the NMAP algorithm (see section

5 Except the NoC simulator, which is written in C++

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

38

 3.3.3), which can be applied no just on a 2D mesh but, also on topologies like torus,
hypercube, 3-stage clos and butterfly.

This framework uses multiple routing protocols (dimension ordered routing,
minimum-path and traffic splitting). SUNMAP is a complex tool for automatically
evaluating different topologies for Networks-on-Chip, in an application-aware context.
The best topology is obtained by considering the minimization of the average packet
latency, by satisfying bandwidth constraints, and the minimization of power
consumption, by satisfying area constraints.

SUNMAP uses a single application mapping algorithm is. Considering other
mapping algorithms too, will provide a more comprehensive view on the performance of
different NoC architectures. This framework is actually focused on network topology
selection and generation, rather than application mapping. Also, the mappings are
evaluated with analytical models. The dynamic effects of the network may be captured
only by using a Network-on-Chip simulator.
 A framework for simulation and exploration of the mapping space was proposed
by Ascia et al. [72]. They search for the best NoC mapping using a multi-objective
approach. A Network-on-Chip simulator is used to evaluate the mappings by considering
both power and performance metrics.
 Three kinds of mapping algorithms are used (in a multi-objective version):
genetic (see Section 3.3.5), branch and bound (see section 3.3.2) and NMAP (see section
 3.3.3). Their NoC architecture uses a 2D mesh topology with Dimension Order Routing
and wormhole switching.
 While SUNMAP is flexible in terms of NoC architecture, the second approach
presented here is flexible in terms of Network-on-Chip application mapping algorithms.
UniMap takes the advantages of both approaches presented above. Multiple application
mapping algorithms can be used to map real applications onto different Network-on-Chip
designs. The mappings may be evaluated using either analytical models or a NoC
simulator (developed by us). Also, multi-objective optimizations are possible.

4.1.1 NoC Designs with Topologies other than 2D Mes h
Obviously, a Network-on-Chip architecture with 2D mesh topology is not the best choice
in every situation. The work from [73] sustains this affirmation. Long packet latencies are
expected with 2D mesh topologies because there are no short paths between remotely
situated nodes. More importantly, real-life applications have varying communication
requirements. An alternative for 2D mesh topologies would be to use fully customized
topologies. However, although such topologies provide better connectivity, they lose the
property of structured wiring (which 2D mesh topologies have). A fully customized
topology has wires with varying length, performance and power consumption. Also, it is
very important to mention that specific routing algorithms are required for custom
topologies. In [73] the network topology is a superposition of a few long-range links and
a 2D mesh. By using long-range links, shortcuts between different regions of the network
are practically created.

The previously cited paper proves that a customization of the 2D mesh topology
significantly improves the performance of the Network-on-Chip. Therefore, one should
not resume at evaluating an application mapping algorithm on 2D mesh topologies only.
Researching how exactly application mapping algorithms behave on other network

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

39

topologies could prove useful, especially if several application mapping algorithms are
evaluated within a common NoC simulation framework.

4.1.2 Network Simulation for Application Mapping Al gorithms’
Evaluation

As it is shown in [72], a Network-on-Chip simulator is obviously required to capture the
dynamics of a network. Analytical models may easily be insufficiently accurate.

As stated in HiPEAC’s vision [1], the Network-on-Chip research field is too new,
so that mature tools are still not available. They are expected only around year 2015. A
recent survey of NoC tools [74] presents a comparison of some of the most known NoC
tools. A common characteristic of the majority of these simulators is that there are not
(yet) available for the research community. Besides the ns-3 framework [75] for Internet
networks simulation, Noxim [76] is (according to this survey) the only network simulator
currently freely available.

Noxim is a highly customizable simulator. It has parameters like: network size,
buffer size, packet size, routing algorithm, packet injection rate, traffic pattern, etc. The
simulator allows NoC evaluation in terms of throughput, delay and power consumption.
However, it currently does not work with real applications and it uses just the 2D mesh
topology. We found out it the mesh may only be as big as 19x19 nodes. This is a
scalability issue since NoCs with 1000 nodes (Kilo-NoCs) are already researched [77].
Additionally, we cannot estimate NoC area using Noxim.

McPAT [78] is an integrated power, area and timing tool for multicore and
manycore designs. It can model a 2D mesh NoC but, the interconnection part is not very
parameterizable yet. McPAT is currently in a beta stage of development.

We have therefore decided to implement our own Network-on-Chip simulator. It
is integrated into UniMap and it will be presented in section 4.3.

4.2 The Unified Framework Design
UniMap is composed of the following major modules:

- a model for representing real applications;
- a module for assigning the application tasks to IP cores (Scheduller);
- a module that contains application mapping algorithms (Mapper);
- a model for representing different Network-on-Chip architectures;
- a Network-on-Chip simulator.

This design reflects the interaction between the Network-on-Chip application mapping
problem and the other two problems with which it interacts (routing and scheduling – see
sections 3.1.1 and, respectively, 3.1.2). The modules are as decoupled as possible. This
approach allows UniMap to be flexible, reusable (and modular).
 We use eXtensible Markup Language (XML) schemas to describe real
applications and Network-on-Chip architectures. The Scheduler, Mapper and NoC
simulator modules do not interact directly. They communicate through XML models.
This approach theoretically allows any NoC simulator to be used with UniMap.
Similarly, any scheduling or mapping algorithm can be integrated as easy as possible.

The following figure illustrates these components and presents the design flow of
the unified framework.

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

40

IP cores

Scheduller

Configure NoC architecture

Mapper
Application

mapping

algorithms

NoC simulator

Network

traffic

generator

Best

mapping?

NO

YES

Communication Task Graph

(CTG)

T0

T1

T3

T4

T2

CV01 CV02

CV13

CV24

CV34

Application Characterization Graph

T0

T1

T3

T4

T2

CV01 CV02

CV13

CV24

CV34

CPU

DSP1 DSP2

ASIC

NoC implementation

CPU DSP1

DSP2 ASIC

Use

simulator?

Analytical

model

END

YES

NO

Fig. 22 UniMap design flow

An application running on a NoC architecture is described through its Communication
Task Graph (CTG). The CTG presents the application partitioned into tasks (concurrent
threads). It shows the communication pattern of the application: which tasks are
communicating with which tasks and the communication volume of the data exchanged
between tasks (e.g.: CV01 denotes the communication volume from task T0 to task T1).

We propose obtaining CTGs in three distinct ways:
1. randomly, by using the TGFF [46] tool;
2. from realistic embedded applications, using the E3S benchmarks suite [56];
3. from real-world multithreaded applications, using the CETA [50] tool.

The tasks must be first assigned to the IP cores. This can be done using a
scheduling algorithm. For example the EAS algorithm [53] is able to perform scheduling
under real-time restrictions, while trying to optimize the energy consumption of the NoC
architecture.

The IP cores library from E3S was integrated in UniMap. For each IP core,
information like task execution time and power consumption for a given task is known.

The output of the scheduling algorithm is the Application Characterization Graph
(APCG). The APCG is the input for the mapping algorithm.

A main component of the framework will consist in a library containing (state of
the art) application mapping algorithms’ implementations. The performance of every
mapping algorithm can be evaluated on multiple NoC designs, through our developed
simulator.

The NoC simulator is another important part of the unified framework. An
important aspect of the simulator consists in its flexibility. This will impact on the
number of possible ways in which the simulated NoC can be configured. The simulator is
also responsible with determining the network’s performance represented through
multiple objectives (performance, energy consumption, etc.). This allows a thorough
comparison of the mapping algorithms, in a unified manner. For each selected network
design (e.g.: the network topology can be varied), an application mapping algorithm will

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

41

provide multiple mappings, until the best mapping is determined. The NoC simulator
includes a network traffic generator which emulates the communicational behavior of the
application (based on CTG and APCG graphs).

We justify in the following section why it is difficult to directly run real
applications on the modeled NoC architectures. Afterwards, we present the three tools
mentioned above in order to stress out how they model the communication pattern of an
application through a CTG. Our network traffic generator is based on these CTG
generating tools. We continue by describing how we model the execution of the
application tasks by the IP cores. Finally, we present a Network-on-Chip simulator
developed for this unified framework.

4.2.1 Model for Real Applications’ Communication Pa tterns

4.2.1.1 The Problem of Running Real Applications on NoC Simulators
A major problem that network simulators have is given by how exactly real applications
could be run. A network simulator is not capable of executing binary code. It only knows
to route packets, it is communication oriented and not execution oriented. A complex
simulator, which simulates IP cores that execute real parallel applications that
communicate over an interconnection network, would be better suited. However, while
currently there are scalable network simulators, multicore simulators do not provide the
same scalability (they can usually run no more than tens of cores).

This is the main reason why traffic patterns are used for NoC research, instead of
real applications. A traffic pattern which provides a statistic distribution of the
communication is something simple to model and also fast to simulate. It can thus
provide useful results in the early phases of NoC development. But, such a traffic pattern
does not capture all the properties of a real IP core. The communication patterns of real
applications can be bursty and reactive; they are not usually uniformly distributed.
 It is shown in [79] why it is difficult to capture the communication patterns of real
applications. The authors propose a network traffic generator that can emulate the
communication of an IP core by grabbing the type and the timestamp of the
communication events. Thus, a real application will run on a full system simulator and
the communication patterns will be intercepted. The traffic generator will then be able to
mimic the communication pattern of the IP core on different NoC architectures. In order
to accomplish this, it is shown that the traffic generator needs to be reactive. This is
because the network latency varies from one NoC architecture to another. If only
communication timestamps would get collected, whenever a message is delayed (due to
network congestion for example), this delay should propagate to subsequent messages as
well.
 Therefore, directly running real applications on modeled NoC architecture is not
something easy to achieve. Also, our unified framework is intended to use traffic patterns
from real application. Thus, like it is suggested in [45], we propose using CTGs to model
the communication pattern of an application.

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

42

4.2.1.2 Using Communication Task Graphs to Model the
Communication Patterns of Real Applications

4.2.1.2.1 Task Graphs For Free (TGFF)
A Communication Task Graph can be automatically generated using the TGFF [46]. This
tool allows the user to generate task graphs of theoretically unlimited size, in a random
fashion.

With TGFF, the nodes of the graph are tasks and the arcs of the graph represent
the communication between the tasks (nodes). The node of the graph can also be seen as
a processor (IP core), and the arc of the graph can be interpreted as a communication
resource. An arc can also have a number associated to it. This represents the amount of
communication. TGFF allows the user to specify the number of tasks a graph should
have, the maximum in-degree and out-degree of the graph nodes, etc. An arbitrary
number of attributes can be associated to processors and communication resources. Such
attributes can be: execution time, power consumption, cost, etc. The values of the
attributes are automatically (randomly) generated by TGFF, based on
some parameters specified by the user (e.g.: the average value of the
attribute and the interval within it can vary).

TGFF can create only acyclic task graphs. This is because
TGFF takes into consideration (hard) real-time systems. Deadlines
may be set on the tasks from a graph. Additionally, a period may be
assigned to a task. This means that such a task must re-executed by a
processor after a specified amount of time.
 The advantage of using TGFF over simple (stochastic) traffic
patterns (like bit reverse, bit complement etc.) is that it provides a
standard method for generating random task graphs.

4.2.1.2.2 The E3S Benchmarks Suite
Another way of obtaining CTGs is the embedded systems synthesis
benchmarks suite [56], which is based on the EEMBC [80]
benchmarks suite. This benchmark suite contains task graphs for five
embedded application types: automotive/industrial, consumer,
networking, office automation and telecommunications. There is a
version of each task graph for three kinds of systems: distributed
(cords), wireless client-server (cowls) and system-on-chip (mocsyn).
An application is described by a set of task graphs.

Like in TGFF, the task graphs from E3S are Directed Acyclic
Graphs; they have a period and deadlines may be set on tasks. The
period of a task graph is defined as the amount of time between the
earliest start times of its consecutive executions [44]. A deadline is
defined as the time by which the task associated with the node must
complete its execution [44].

Each task graph is described using an ASCII file in the TGFF
format. For example, task graph 2 from the auto-indust-mosyn
benchmark is described as in Fig. 24.

Fig. 23 The task
graph 2 from the

auto-indust-mocsyn
benchmark

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

43

It can be observed that there are two main
elements in the above task graph description
file: TASK and ARC. Both of them are
characterized by the TYPE attribute (which is a
number). For the ARC element, the TASK
attribute specifies the amount of
communication required by the data exchange
between the interconnected tasks. The values
which correspond to each TYPE of ARC are
specified in the same TGFF file (see Fig. 25).

@COMMUN_QUANT 0 {
0 4E3
1 8E3
2 15E3
3 1E3
}

Fig. 25 The communication volumes

For example, TYPE 0 means a communication
volume of 4000 bits.
For the TASK element, the TYPE attribute
specifies the type of the task. For example,
TYPE 5 denotes a Fast Fourier Transform
(Auto/Indust. Version). All these types are
described in the all-tasks file (from E3S). For
each type of task, performance indexes are available. They were obtained using the
embedded processors from EEMBC. The next figure shows an example with such
performance indexes, for the AMD ElanSC520 processor:

AMD ElanSC520-133 MHz -- square
@CORE 0 {
price buffered max_freq width height density preempt_power commun_en_bit
io_en_bit idle_power
 33 1 1.33e+08 3.10e-03 3.10e-03 0.275 0 0 0 0.16
#--
type version valid task_time preempt_time code_bits task_power
Fast Fourier Transform (Auto/Indust. Version)
5 0 1 0.014 150E-6 7.1e+04 1.6

Fig. 26 Example of task execution times

It can be observed that for the FFT task, the above AMD processor requires an execution
time of 0.014 seconds and the power consumption is 1.6 W.
With the E3S mocsyn benchmarks, a task is described through the following parameters:

- type = the type of the task (all task types are described in the all_tasks file);
- version = 0 (this parameter is always set to zero);

@TASK_GRAPH 2 {
PERIOD 0.0009

TASK src TYPE 45
TASK fft TYPE 5
TASK matrix TYPE 10
TASK ifft TYPE 9
TASK fir TYPE 6
TASK angle TYPE 0
TASK road TYPE 13
TASK table TYPE 14
TASK sink TYPE 45

ARC a2_0 FROM src TO fir TYPE 0
ARC a2_1 FROM fir TO angle TYPE 0

ARC a2_2 FROM src TO fft TYPE 2
ARC a2_3 FROM fft TO matrix TYPE 2
ARC a2_4 FROM matrix TO ifft TYPE 2
ARC a2_5 FROM ifft TO angle TYPE 2

ARC a2_6 FROM angle TO road TYPE 0
ARC a2_7 FROM road TO table TYPE 0
ARC a2_8 FROM table TO sink TYPE 3

HARD_DEADLINE d2_0 ON sink AT 0.0009
SOFT_DEADLINE d2_1 ON sink AT 0.0003
}

Fig. 24 Textual representation for task
graph 2, from auto-indust-mocsyn

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

44

- valid = 0 or 1 (it is set to 1 when both ips6 and cbytes7 parameters are defined);

- task_time =][
1

s
ips

(the task execution time, in seconds);

- preempt_time = task preemption time (taken from the pspecs file);
- code_bits = 8cbytes (the code size of the task, in bits);
- task_power = the task power consumption, in Watts (taken from the pspecs file).

Each IP core has the following parameters:
- price = the core’s commercial price (taken from the pspecs file);
- buffered = 1 (specifies if the communication of the core may be buffered; this

parameter is momentary set to 1);
- max_freq = the processor’s frequency, in Hz (taken from the pspecs file);
- width = the width of the core, in meters (computed from the area parameter, taken

from the pspecs file);
- height = the height of the core, in meters (computed from the area parameter,

taken from the pspecs file);
- density = 0.275 (this parameter always has this value);
- preempt_power = 0 (this parameter is momentary set to zero);
- commun_en_bit = 0 (this parameter is momentary set to zero);
- io_en_bit = 0 (this parameter is momentary set to zero);

- idle_power =
10

_ powertask
[W] (taken from the pspecs file).

4.2.1.2.3 Automatically Extracting Communication Patterns from
Multithreaded Applications

CETA [50] is a tool freely available for academic research that allows an automatic run-
time Communication Extraction from Threaded Applications (CETA). It is implemented
as a Simics [81] module being dependent on the processor architecture and Operating
System (OS). The current version of CETA runs on a virtual machine emulating a
Pentium 4 processor and a RedHat 7.3 OS with version 2.4.18 of the Linux kernel (it
includes SMP support).

While the (multithreaded) application runs, CETA traces the memory operations.
In order to know the thread that performs the memory accesses, the context switches
must be intercepted. Intercepting context switches is what makes this tool to be OS and
CPU dependent.

CETA performs data flow analysis and (with some Python scripts) it generates the
Communication Task Graph (CTG) that corresponds to application. Each node from this
graph is a thread (or process). The directed edges of the graph show exactly how the
communication takes place among the threads: which threads communicate with which
threads and the amount of communicated data (expressed in bytes). Each thread is
identified through its processes identifier (PID).

6 Iterations per second (how many times the processor can execute the task in one second - a parameter
taken from EEMBC)
7 Code size in bytes (the code size of the task - a parameter taken from EEMBC)

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

45

Two important features of CETA are the Phase Partitioned CTGs and the Directed
Acyclic CTGs.
 CETA allows the partitioning of a CTG based on a user specified phase number.
The phase is expressed in CPU clock cycles and what it basically does is to split a CTG
into multiple CTGs. Each resulting CTG will contain only the communication that
occurred within its corresponding phase. Such an approach can help at researching the
network contention because the threads’ communication can be more intensive only in
certain phases of execution. Still, it must be noted that the user can specify a single phase
number for splitting a CTG. The user cannot for example say that the first phase should
be 1000 CPU cycles long, the second phase 2000 CPU cycles, etc. The phase number is
constant.
 CETA also has the ability of transforming a Phase Partitioned CTG into a
Directed Acyclic CTG. This means eliminating the unbounded loops from a CTG, which
is important for hard real-time applications. A Directed Acyclic CTG allows bounds on
graph execution times.
 Additionally, CETA permits the filtering of the data used for creating a CTG. The
threads can be filtered by PID and communication volumes which are less than a
specified number of bytes can be excluded. Also, the user can make use of the “magic”
instructions [81] from Simics. All those elements contribute to a more focused
communication tracing by obtaining the CTG for specific parts of the application.
 CETA has the disadvantage of a significantly increased application simulation
time (compared to the simulation time of Simics, without CETA). Also, the memory
consumption can be very big. For example, the authors report ~2.87 GB of memory
required for obtaining the data flow of the Tachyon [82] benchmark.

4.2.2 Model for the Processor Elements’ Execution
In [45] synthetic benchmarks are considered the suitable kind of benchmarks for NoCs.
The main reason is that synthetic benchmarks scale with the system size while still
keeping the properties of some particular fixed size application benchmarks. A synthetic
benchmark represents an abstraction for a task graph with known computation times and
communication loads. Thus, such a benchmark does not actually contain application code
but rather it tries to capture the communicational behavior of the application.

Synthetic benchmarks must capture the control and data dependencies between
tasks. A simple traffic pattern like uniform random does not account for such
dependencies. It simply injects packets into the network with constant probability. Such a
stochastic behavior is unlikely to model a class of real applications. Obviously, a
complete implementation of real applications captures all the dependencies. But, this
approach is considered too complicated and time-consuming. It is considered in [45] that
the model of the communication is enough for the evaluation of the communication
architecture. The details of the computations performed are not necessary and thus, Finite
State Machines that emulate the communication between the tasks of the real applications
are proposed.

Communication Task Graphs (CTGs) are used for modeling the applications.
TGFF [46] is proposed for generating such CTGs because it provides control and data
dependencies.

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

46

Each Processing Element (PE) from the NoC is modeled as a Finite State
Machine (FSM). The FSM is generated automatically from the CTG and mapping, and it
contains the following information:

- task list: what tasks are mapped to the PE (this says to what PEs data can be send
and from what PEs data can be received);

- control information : the data dependencies (e.g.: a communication with a certain
PE will be initiated only after enough data was received from another PE);

- processing time (P): how much time a PE requires to execute a task. When
enough data was received, the PE will execute P operations (i.e. will wait for a
certain amount of time) before generating a response;

- transaction data amount (D): the size of the communication, which will be
generated after processing.

The PE that contains
the root task of the
CTG starts injecting
packets into the
network with a
frequency specified by
the CTG. While the PE
with the root task is
initially in the
processing state (2) of
the FSM, the rest of the
PEs are in the waiting
state (1). The PEs enter in the processing state after all required data are received. The
duration of the processing is given by the task type and by the processing element type,
too. After the processing is done, the PE enters in state 3. In this state, the generated data
is sent to the required PEs. After all the generated data has been sent, the PE reenters in
the waiting state.

4.2.3 An Interface for Representing the Inputs Used by the Unified
Framework

This section proposes an XML based interface for describing the inputs (applications and
NoC architectures) of our unified framework. Using XML schemas (XSDs), we represent
the structures of:

- an application task;
- an Intellectual Property (IP) core;
- a Communication Task Graph (CTG), provided by any library of applications

described through CTGs;
- an Application Characterization Graph (APCG), created by any scheduling

algorithm;
- a mapping, generated by any application mapping algorithm;
- the NoC node;
- the Network-on-Chip link;
- the NoC topology.

Fig. 27 The FSM associated to a PE

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

47

We have chosen the eXtensible Markup Language (XML) for creating an
interface to our unified framework’s inputs because it is a very useful format for keeping
and communicating data between decoupled systems, in a platform independent manner.
XMLs are easy to create and manipulate by computers and are also human readable.

The main reason for creating an interface for the inputs of our framework is given
by our purpose to design a unified way of researching the application mapping problem.
Through this interface, the framework will expose what information it requires and uses,
and also how this information must be organized.

Our XML interface uses XML binding tools to provide access to the XML
documents from Object Oriented code. We use the Java Architecture for XML Binding
(JAXB) [83] to map our interface to Java classes, and we do the same with C++, by
making use of [84] (which is an XML data binding tool for C++).

The following subsections briefly present the XML Schema Definitions (XSDs)
for each of the framework’s inputs. More details are available in [85].

4.2.3.1 The Application Task
A task has the following components:

- ID: a unique task identifier;
- type: the category of tasks from which this task is part of;
- name: the name assigned to this task (optional parameter).

4.2.3.2 The IP Core
An IP core has the following characteristics:

- ID: a unique core identifier;
- name: the name assigned to this core (optional parameter);
- frequency: the clock frequency, in Hertz (optional parameter);
- width: the core’s width, in meters (optional parameter);
- height: the core’s height, in meters (optional parameter);
- idlePower: the power (in Watts) consumed by this core when it is idle (optional

parameter).
Note that we may use width and height in order to compute the area of the core.
 Any task that can be executed by a certain IP core is specified through an XML
data type with two attributes. The execTime (optional) attribute tells us the execution time
(in seconds) of the task, when it runs on the corresponding IP core. The power (optional)
attribute specifies the power (in Watts) required by the task to be executed by the
corresponding IP core.

4.2.3.3 The Communication Task Graph
The Communication Task Graph (CTG) describes an application that is divided into
communicating tasks. The ctgType data type is used to represent a CTG.

The CTG has a unique identifier (the id attribute) and optionally, a period. The
period of a CTG is a positive floating point number, expressed in seconds. When it is
given, it tells us that the CTG must be periodically executed. Additionally, a CTG marks
the communications between the tasks of the application. They are described using the
communicationType data type.

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

48

The communicationType specifies the volume of data (in bits) sent from a task
(source) to another task (destination). The source and destination tasks belong to the data
type called communicatingTaskType. Each task is identified through the id attribute.
Optionally, a communicating task may have deadlines attached to it.

A task deadline is a positive floating point number and it may be either soft
(deadline) or hard (deadline).

4.2.3.4 The Application Characterization Graph
The apcgType has two attributes: a unique identifier (id) and a CTG identifier (ctg). The
CTG identifier shows to which Communication Task Graph this APCG belongs to. An
APCG contains a list with the available IP cores. Each core has at least one task assigned
to it. The core – task association is described through the coreType.

Currently, the APCG taskType is identical to the taskType from the core XSD. In
future versions, the APCG taskType may contain additional information, like the time
when each task is scheduled to run.

4.2.3.5 The Mapping
The mappingType has two attributes: a mapping unique identifier (id) and the identifier
of the APCG (apcg) for which this mapping was created. A mapping contains a list of
NoC nodes. Each node must have at most on core assigned to it.

The mapType is used to represent the node – core association. Each core is
represented through its identifier (see the ID element from the core XSD). This is the
same for the network nodes. However, for the nodes, the identifiers are based on the NoC
topology for which the mapping is created.

We use the XML schemas presented above for representing the applications
which run on our unified framework and the IP cores map onto the NoC tiles. However,
we also need to describe the Network-on-Chip architecture. Information regarding the
NoC which will be simulated may also be needed by the scheduling and mapping phases.
Thus, we similarly use the following XML schemas to describe the Network-on-Chip
architecture.

4.2.3.6 The NoC Node
The network node is described through the nodeType XML data type. It has a unique
identifier (id) and optionally, it may specify the identifier of the IP core which is mapped
to it. The cost element is optional: it can be used to specify the node’s cost, which can be
any kind metric, like for example energy consumption. A mapping algorithm may use
this element.

Additionally, each node must be connected to at least one network link (otherwise
it would be isolated). A network link may be used by the node to inject (type = “in”) or
to receive (type=”out”) packets. The value attribute specifies the link’s unique identifier.

Also, a routing table may be available for a node. For example, an application
mapping might also provide the routing function. The routing table entry has three fields:
the identifier of the source node, the identifier of the destination node and the identifier
of the link which will be used to route the traffic coming from the source node and going
to the destination node.

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

49

 Parameters that are specific to a certain network topology may be described using
the topologyParameterType. Each topology parameter is specified through the type
attribute and it is connected to a topology and has a value.

4.2.3.7 The NoC Link
Each link is described using the linkType. It has a unique identifier and like in the case of
the network node, a link may have a cost associated to it. For example, it can be the
energy needed to transmit a flit. However, the main characteristic of a link is its
bandwidth, expressed in bits per second.
 The mandatory XML elements of a link are the source node (sourceNode) and the
destination node (destinationNode): packets are sent from a network node (the source) to
another network node (the destination).
 Like in the case of network nodes, parameters specific to a certain topology may
be specified using the topologyParameterType.

4.2.3.8 The NoC Topology
Nodes and links create the Network-on-Chip topology. Each topology is uniquely
identified using the id attribute (we use the name attribute for a human readable topology
naming).

Topology parameters may be used to set different properties of each kind of
topology (a 2D mesh, for example, has two parameters: row and column).

4.2.4 The Scheduling Module
The scheduling module of our unified framework has the role to provide a set of
algorithms that are responsible with mainly assigning the tasks of an application to
available IP cores. We do not currently deal with planning the execution of the assigned
tasks on the IP cores. Typically, a scheduling algorithm works with a Communication
Task Graph as input and outputs an Application Characterization Graph. We propose a
common interface to all of the scheduling algorithms.
 Currently, the Scheduler interface simply defines the schedule operation, which
involves reading a CTG, accessing the available IP core library (both defined using
XMLs), assigning tasks to cores through a certain algorithm and outputting an XML file
containing an APCG.
 For now, we have implemented just three simple schedulers: random, direct and
minimum execution time.

The random scheduler deals with the task-to-core assignment in a random
fashion: for each CTG task, an IP core is randomly chosen from the library of IP core.
Multiple tasks may be assigned to the same IP core and the same type of core may be
used multiple times (e.g.: we may have 3 DSP cores with exactly the same configuration,
each of them having at least one task scheduled for execution).

The direct scheduler just assigns each task to the first IP core that can execute it.
The minimum execution time scheduler assigns each task to the IP core which

executes it the fastest time.

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

50

4.2.5 The Mapper Module
The mapping module holds the application mapping algorithms library of the unified
framework. An application mapping algorithm has the role of topologically placing the IP
cores onto the available Network-on-Chip nodes. It uses the Application Characterization
Graph provided by the scheduling module: all the IP cores from this graph are assigned to
NoC nodes. The APCG and the mapping produced by the algorithm are both described
using the XML interface presented in Section 4.2.3.

We have developed an interface, called Mapper, for all the application algorithms
implemented by our unified framework.
 Currently, the Mapper interface simply specifies the map operation. This
involves: reading the APCG data from an XML file, mapping the IP cores onto the nodes
of the given NoC and outputting the obtained mapping into an XML file. As a basic
precondition, this operation might throw a TooFewNocNodesException exception when
the given NoC does not have enough nodes for all the cores that need to be mapped (each
NoC node can hold only one IP core).
 We have implemented the random mapper as a basic application mapping
algorithm. This Mapper randomly places the IP cores onto the NoC tiles.
 Another straightforward Mapper is the exhaustive search mapper. It performs
mapping by generating all the possible mappings, which is obviously a factorial number.
This mapper is clearly unfeasible but, we used it for generating the optimal solutions on a
small 3x3 2D mesh NoC.
 The mapping module contains all the application mapping algorithms developed
in our unified framework. Currently, we have integrated the following algorithms:
Simulated Annealing (see Section 3.3.1 3.3.2) and Branch and Bound (see Section 3.3.2).
We have also developed an Optimized Simulated Annealing (it will be presented in
Chapter 6). UniMap also integrates the jMetal library [86], which provides state of the art
evolutionary algorithms for single and multi-objective optimizations. Exactly what
evolutionary algorithms we used from jMetal will be detailed in Chapters 7 and 8.

We tried to implement the mapping algorithms as accurately as possible. It is well
known that floating point numbers are represented with approximation by computers. For
example, the number 0.1 cannot be represented in binary floating point with finite
precision because: 0.110 = 0.000110011...2. Since 0.1 would require an infinite number of
bits in order to be represented in base 2, approximation is inevitable. Representing 0.1 on
24 bits leads to the value 0.100000001490116119384765625.
 Floating point arithmetic in computers is therefore approximate. Knuth defines in
[87] (page 218) the following relations for floating point comparison with approximation:

),max(baeabba ⋅>−⇔≺ (a definitely less than b)

),max(baebaba ⋅>−⇔≻ (a definitely greater than b)

),min(baeabba ⋅≤−⇔≈ (a is essentially equal to b)

),max(~ baeabba ⋅≤−⇔ (a is approximately equal to b)

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

51

Two relations are defined for testing if two floating point numbers are equal.
According to Knuth, the “essentially” relation is somewhat stronger than the
“approximately” relation.

All the relations above are based on a positive real number that specifies the
degree of approximation considered. We set e to be the machine epsilon, which gives an
upper bound on the relative error resulted due to rounding made in floating point
arithmetic. This number is the smallest floating point number which may be represented
by a computer. Thus, it is machine dependent but, it can be easily computed. Based on
the algorithm from [88], our MathUtils class automatically computes this number and
stores it in the MACHINE_EPSILON_FLOAT constant (so that this computation is
performed only once per program run).

4.3 The Developed Network-on-Chip Simulator
In the following section we present ns-3 NoC, a Network-on-Chip simulator that the
author of this Thesis started to develop during his five months of PhD external research
stage at Augsburg University (Germany), Department of Systems and Networking, led by
Professor Theo Ungerer. We decided to develop our own NoC simulator because the
current tools for this (new) research field are still immature. According to HiPEAC’s
vision [1], mature NoC simulators are expected only in 2015.

We describe next a modular, flexible and scalable NoC simulator. Our ns-3 NoC
is an open source project, which we contribute to the Network-on-Chip research area.

4.3.1 The ns-3 Network Simulation Framework
The ns-3 simulator is a discrete-event network simulator targeted primarily for research
and educational use. It is developed as a network simulator for Internet systems. An
Internet stack is implemented (protocols like TCP, IPv4, IPv6, UDP, ARP etc. are
available). Traditional routing protocols for Internet systems are also implemented. The
simulator provides multiple models for interconnecting network nodes: point to point,
CSMA, wireless etc. ns-3 is written in C++ and it also supports Python scripts. It is built
after the successful ns-2 simulator, which was one of the most used simulators for
network research. There are over 50% of ACM and IEEE network simulation papers from
2000 - 2004 that cite the use of ns-2. The ns-3 project started in 2006 and it is an open-
source project.
 ns-3 is focused on modularity, reusability and extensibility. It offers a clean
design (with a high accent put on software design) and scalability. There is a set of
fundamental components (objects) with which ns-3 works:

• Node: the representation of a network entity such as a personal computer, a
router, etc. A Node can aggregate other components as protocol stacks and
therefore, it has the capability to process packets;

• Application : a packet generator and consumer which can run on a Node and talk
to a set of network stacks;

• Topology: represents the network’s topology and it is composed of two elements:
o NetDevice: the Network Interface (the link between a Node and a

Channel);
o Channel: the medium used to communicate and interconnect NetDevice

objects;

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

52

ns-3 supports virtualization by developing two modes of integration with real
systems:

• ns-3 interconnects virtual machines (virtual machines run on top of ns-3 devices
and channels);

• ns-3 stacks run in emulation mode and produce/consume packets over real
devices.

To integrate with real network stacks and emit/consume packets, a real-time scheduler is
used to lock the simulation clock with the hardware clock. The purpose of the real-time
scheduler is to cause the progression of the simulation clock to occur synchronously with
respect to some external time base. Without the presence of an external time base,
simulation time jumps instantly from one simulated time to the next. With a non-real time
scheduler, ns-3 freezes the simulation time during event execution and the simulator
advances the simulation time to the next scheduled event. A real time scheduler has the
same behavior but, it also attempts to keep the simulation clock aligned with the clock of
real (not simulated) machines.

While most simulators generate text files as their output, ns-3 has a tracing system
for decoupling the generation of trace events from their serialization to a trace file. Two
serialization formats are currently supported: plain text and PCAP. PCAP is the file
format used by known network protocol analyzers (network sniffers) like Wireshark
(http://www.wireshark.org/) and tcpdump. ns-3 traces are what the simulator produces as
output, and are typically used for tracking the communication that occurs in the simulated
network.

ns-3 uses packet generators for creating traffic in the network. They are called
applications. An application can perform the simple task of injecting or consuming
network packets. The simulator currently does not support running real applications on
the simulated network (allowing parallel applications, written in MPI, to run on an ns-3
simulator is a work in progress). Therefore, traffic patterns are typically used with ns-3
for evaluating the performance of a network.

The developers of ns-3 claim that this simulator is one of the fastest and the most
memory efficient simulator currently available. However, parts of the simulator are still
under development (for example, the visual part of ns-3 is still experimental). There is
not yet a Graphic User Interface for building network topologies (the user has to
programmatically interconnect the network nodes).

Although ns-3 is mainly a network simulator for Internet systems, the core of the
simulator has been used for implementing a Network-on-Chip simulator. Essentially, the
fundamental components of the ns-3 framework have been implemented for a NoC
system.
 The implementation of the ns-3 NoC simulator started from the work done in
[89], where a Network-on-Chip simulator, called NoCSim, was developed using the Java
programming language. The ns-3 NoC simulator is written in C++ and it is faster than
NoCSim. Our ns-3 NoC simulator inherits the features of NoCSim:

• 2D mesh NoC topology;
• Irvine [90] NoC architecture;
• Dimension order routing (XY and YX) and other two simple routing algorithms

based on network load: Static-Load-Bound and Self-Optimized;
• Wormhole switching;

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

53

• Deterministic (bit-complement, bit-reverse, matrix transpose) and stochastic
(uniform random) traffic patterns;

• User specified packet size;
• Packet injection probability;
• Synchronous network packet injection;
• Input channel buffering;
• Measuring the average packet latency after simulating the NoC for a given

number of cycles (the NoC may also be warmed up for a specified number of
clock cycles).

The ns-3 NoC simulator is however a more flexible, scalable and faster simulator. It also
adds more features. For example, it allows asynchronous network packet injection, more
switching mechanisms and topologies and it measures power consumption and area.
More details about ns-3 NoC are given in the next sections.

4.3.2 The ns-3 NoC Architecture
We start presenting our developed simulator by overviewing its architecture. The details
about each ns-3 NoC component are detailed afterwards. The ns-3 NoC basic architecture
is illustrated by the following figure, which presents the major components of a network
node.

The NocApplication models an
ns-3 application. It represents the
Processing Element (PE) of a Network-
on-Chip, being responsible with
injecting packets into the network and
with receiving packets from the network
(obviously, it receives those packets
which are sent to it by other Processing
Elements).

Packets are injected into the
network with a frequency specified by
the parameter called data rate. The data
rate is expressed in bits per second, and
based on the user configurable size of
packets, the packet injection frequency
is determined. An ns-3 application runs
for a given amount of time. Therefore,
packets are injected into the network,
until the running time of the application ends. Additionally, the user may specify a
maximum amount of bits that an application can inject into the network.

This kind of ns-3 application allows for packets to be injected into the network
asynchronously. However, the simulator also models an ns-3 application which mimics
the behavior of synchronous network (like in [89]).
 The synchronous ns-3 application allows packets to be injected into the network
with a certain injection probability. This application can inject one packet per clock
cycle. Each network router routes one packet per network cycle. Packets are injected for a

Fig. 28 The architecture of the ns-3 NoC simulator

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

54

certain number of cycles (specified by the user). Network-on-Chip clock frequency is an
ns-3 NoC parameter.

The NocNode models the network node. It allows ns-3 applications to connect to
it, and it also aggregates a router.

The NocRouter has the responsibility to route the packets through the network. It
uses a switching mechanism for deciding when packets are sent forward, and a routing
protocol which determines the next network node where the packet will go.

The NocSwitchingProtocol represents a common specification for all the
switching techniques. Currently, the simulator implements store-and-forward, virtual cut-
through and wormhole switching techniques.

NocRoutingProtocol is an interface for all of the routing protocols from the
simulator. The routing protocols implemented are: Dimension Order Routing, Static-
Load-Bound and Self-Optimized routing algorithms.
 A NocNetDevice represents the Network Interface Controller (NIC). It connects
network nodes to network channels, and it is responsible with sending and receiving
packets from adjacent nodes. The router has direct access to the net devices. Based on
what routing path is established, a certain net device will be chosen for sending a packet.
The packet will travel through the channel associated to the selected net device and it will
arrive at the neighboring node via the corresponding net device.

Each net device has one input queue and one output queue (which effectively
allow for input and output channel buffering). The size of these queues can be specified
by the user. Note that, since the size of the input buffers is limited, it is possible that there
are not enough resources available to buffer all the packets which are injected into the
network. This problem is solved by considering that there is a buffer with unlimited size
located at each processing element. This approach was also adopted in [91] and it is
based on the fact that each processing element can use its local memory to store the data
it needs to send over the network, until the NoC is ready to transport it.
 Each net device continuously monitors its input queue and as long as packets are
available, it requires the router to provide a route for the packet from the head of the
queue (the switching mechanism will decide when the packet may be routed). After the
packet is ready to be sent, if the respective channel is available, the send will be made.
 The NocChannel implements the communication channel used by the network. It
is characterized by several parameters. The data rate is practically the bandwidth of the
channel. It shows how many bits the channel can transfer per second. The delay
parameter can be used to specify how much time the channel needs until it starts
transmitting the available data. The channel allows for half-duplex or full-duplex
communication. By default, we consider the NoC to have bidirectional links and thus we
use full-duplex NocChannels. Finally, the physical length of the link may be specified.

4.3.3 The Packet Format
A packet that travels through the network is made
of at least one flit. The first flit from a packet is
called a head flit. A packet may contain
additional flits, called data flits. Typically, the last
data flit from any packet is called a tail flit. All
types of flits contain a data payload but, the head Fig. 29 Packet format

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

55

flit also contains a header. The packet header contains information used at routing it
through the network. Basically, the source and the destination of a packet are codified in
the header. The header is interpreted by the routers in the network. The data payload is
not interpreted.

The head flit represents the header of the packet. Additionally to the header, a
head packet can also contain a data payload, which is represented by one or more body
flits. A data packet is made only of body flits.
The following table presents the parts which compose a header.

Header
part

Size
[bits]

Description

distance 8 The distance to the destination node, expressed relatively from the
source node.

source 8 The address of the source node.
dataFlits 8 How many body flits the packet contains.
groupAddr 16 This field can codify a group of nodes to which a packet can be sent

(useful for multicasting).
subdataId 8 Can optionally be used for package indexing. Ordering packets is

important when they can reach the destination out of order
(adaptive routing).

load 8 Propagates information about network load (useful for adaptive
routing).

Fig. 30 shows the ns-3 NoC packet header.

Fig. 30 The ns-3 NoC packet header format

The ns-3 NoC packet header is based on the Irvine NoC architecture [90].

Currently, our simulator uses only the first three header fields. The other three fields,
useful for multicasting and adaptive routing are for further developments. We already
used the load field while testing ns-3 NoC with two adaptive routing algorithms which
will be presented in section 4.3.6.

Since ns-3 NoC works any kind of k-ary d-cube topology, the distance and source
fields are technically implemented as arrays of d elements, 8 bits each (d is the topology
number of dimensions). The header size increases automatically with the NoC topology
dimensions.

For each dimension, we use the left most bit to mark whether the destination node
is back or forward relative to the source node. For example, in a 2D mesh, this bit has the
following meaning:

- 1 means West (horizontally) and North (vertically);
- 0 means East (horizontally) and South (vertically).

With the ns-3 NoC simulator, the size of the data payload is a parameter. The user
can decide how much payload data a flit can hold. By default, the actual data content is
implicitly set by ns-3. However, the simulator allows the user to specify the contents of
the payload data.

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

56

 In addition to the packet header (called NocHeader), the ns-3 NoC simulator also
uses a so called packet tag: NoCPacketTag. This data structure conveniently stores
additional information used for allowing a better software modeling of the dependence
from head flits and data (body) flits:

- each data flit is tagged with the unique identifier of the head flit that it belongs to.
This allows for a better control of the packets which make a packet;

- whenever a head flit remains blocked in the network (i.e. it cannot advance
because the channel is busy), this information is kept because it can be used at
notifying data flits that their corresponding head flit is blocked in the network8.

The purpose of the packet tag is to keep information about the flits of packet, which is
additional to the one kept in the header of a packet because it is used more for software
modeling purposes. Another use of this is for keeping the time when the packet was
injected into the network and the time when the packet reached its destination. This is
used for collecting statistics.

4.3.4 Network Topologies
Initially, ns-3 NoC implemented just the 2D mesh topology and a variation of it. The
topology used by the Irvine architecture is a 2D mesh that vertically interconnects any
two nodes with two channels (not just one). As a (Bachelor) diploma project from
“Lucian Blaga” University of Sibiu, Romania, coordinated by Professor Lucian Vințan,
PhD and Ciprian Radu (author of this Thesis), student Andreea Gancea implemented a k-
ary d-cube NoC topology [92]. This includes the 2D mesh, 2D torus, 3D mesh, 3D torus
and hypercube network topologies. Additionally, the Dimension Order Routing protocol
was generalized to be applied for any k-ary d-cube topology.

The following UML class diagram summarizes the kind of topologies that are
currently supported by ns-3 NoC.

Fig. 31 The ns-3 NoC topologies

8 The Virtual cut-through switching technique makes use of such information

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

57

All ns-3 NoC topologies inherit the NocTopology abstract class. As a consequence, they
must implement three methods. The first, called Install, builds the topology by
instantiating the network nodes and communication channels and then interconnecting
them. The second method (GetDestinationRelativeDimensionalPosition) is invoked every
time ns-3 NoC needs to know the relative offset of a destination node, from a source
node, in any topology dimension. The third method is used to save the topology in
UniMap’s XML format. Using the setters of the NocTopology class, we can specify the
size of the buffers and what kind of router, routing and switching protocols the NoC will
use.
 The class NocMeshND implements a k-ary d-cube topology. If we want to add
links between the boundary nodes (so that we obtain tori), we use the class NocTorusND.
Bi-dimensional and tri-dimensional meshes and tori can be instantiated with these two
classes. However, for convenience, we also have the classes NocMesh2D, NocTorus2D,
NocMesh3D and NocTorus3D. A k-ary d-cube (mesh, torus) is created by simply
specifying an array with the number of network nodes (k) on each dimension (d).

4.3.5 Router Architectures
We present in this section the router architectures developed in ns-3 NoC. Essentially, we
adopted the common router design available in the network literature [26], [25]. This
router is for networks with a 2D mesh or 2D torus topology. We then adapted this router
design for the general k-ary d-cube and the Irvine NoC topologies.

The following UML class diagram presents the ns-3 NoC router component.

Fig. 32 The ns-3 NoC router component

Two router architectures are implemented in the ns-3 NoC simulator: a generic router for
2D mesh topologies (called FourWayRouter) and the Irvine router. Actually, the
FourWayRouter is designed so that it can be used with any k-ary d-cube NoC topology
(we gave it this name because it is inspired from a typical router for 2D mesh networks).
An abstraction called NocRouter specifies a generic router for the simulator. This
abstraction allows any concrete implementation of a router to make use of the load of the
network. However, this is not mandatory: a router will be able to work with or without
network load. The bridge design pattern [93] is used to decouple the NocRouter

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

58

abstraction from the router component implementation that deals with network load
information (LoadRouterComponent).

The LoadRouterComponent is an interface that requires its implementations to
specify how a router is supposed to compute its local load, and also what load value must
be propagated to the neighbor (from a certain direction). Note that the computation of the
load values is the responsibility of the router, whereas a routing protocol aware of the
network load (like SLB or SO) only uses the load values to perform route evaluations.
The advantage of such decoupling is that any routing protocol can make use of load
information, as it is computed by a certain load router component.
Currently, two load router components are implemented: one for the SLB algorithm and
another for the SO algorithm.

4.3.5.1 The Four Way Router
The next figure shows the architecture of our developed four way router. This router is
used with 2D mesh and 2D torus NoC topologies.

Routing

Switch

Injection

channel

Ejection

channel

Input

channels

Output

channels

Fig. 33 The four way router architecture

It is composed from a routing module, a switch and ten channel buffers. The injection
and ejection channels are used by the Processing Element to send and receive data to and
from the NoC. The four pairs of input and output channels correspond to the four node
neighbors a NoC node may have in a 2D mesh (or torus). Because of the grid structure of
such topology, these channels are tagged with North, East, West and South identifiers.
The size of each channel buffer is a simulator parameter. It is expressed in number of
flits.

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

59

 Each packet flit arrives at a router through its injection channel or through one of
its input channels. Until it can be forwarded, it stays in the corresponding buffer channel.
 In order to forward a packet, the router uses its Routing module to compute the
output port9 to which it will send the packet. This module has a routing protocol which
determines the packet’s route. Route computation is performed only for the head flit of a
packet. The rest of the packet’s flits will simply follow the head flit. This is possible
because the router uses a small memory where is stores the route used for each packet. A
packet route is kept until the tail flit of that packet is forwarded.
 Once the packet route is known, the packet flit enters the switching phase. Here, a
switching mechanism determines when the flits will leave the router and go to another
one (through an output channel). In general, any flit cannot be forwarded until the
assigned output channel buffer cannot hold that flit (because it is full). The switch works
like a crossbar: at any time, any input port can be coupled to any uncoupled output port.
 Once the flit reaches the output channel, it will be forwarded when that channel is
idle, i.e. it can transmit another flit. If output channel buffering is not used, the switch
will not allow a flit to pass while the channel is not idle.
 Our router is capable of forwarding a flit in a single NoC clock cycle provided the
needed output channel is able to transmit it in that cycle.
 This basic and simple router architecture is not bounded by the number of input –
output channel buffer pairs. By simply setting the router to have two such pairs for each
NoC topology dimension, this router architecture can be used with any k-ary d-cube
NoC. This is in fact done automatically when building the topology.
 This router design still needs to be improved to make it model more realistically a
practical router. As further work we intend to implement virtual channels, required for
deadlock avoidance. A router pipeline will also allow us to model the router more
accurately. Such pipeline typically has the following phases: route computation, virtual
channel allocation, switch allocation and switch traversal. When using virtual channels,
an allocator is needed to allocate virtual channels to packets and switch cycles to flits. An
arbiter is required to resolve the situations when there are multiple requests for a single
resource. For example, when two flits, one coming from North and another one from
West, need to take the South path at the same time, which of them will be the one
allowed first? An arbiter makes such decisions. It is the building block for allocators. An
allocator performs the more complex task of matching a set of resources with a set of
requesters. Any requester may need one or more resources. Our current router
architecture relies on the internal event scheduler of ns-3 framework to perform the
arbiter role. Each routing request is an event. Events are registered in an order and they
are processed in a first in first out manner. This allows us to have a Round Robin
arbitration for resources.

4.3.5.2 The Irvine Router
The Irvine router was proposed in [90] to route packets in a deadlock- and livelock-free
manner. Freedom from deadlock is achieved by using separate routing paths for the
vertical direction and unidirectional horizontal paths. Livelock freedom is obtained by
using a minimal routing protocol.

9 Or output ports, in case of multicasting. However, ns-3 NoC does not currently support multicasting.

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

60

 As it may be seen in the following figure, the router consists of: an internal router,
a right router and a left router.

Right I O

Right router

Left router
Internal

router

Left I SR SL

E

NLNR

W

Fig. 34 The architecture of the Irvine router

Our simulator uses this router only for NoCs with an Irvine 2D mesh topology. The
internal router is only used as an interface to the processing element. It receives data from
the Processing Element through two injection channels (Right I and Left I). Everything
that needs to go East (E) or West (W) is put in Right I buffer, or Left I buffer respectively.
The internal router forwards everything from Right I to the right router and everything
from Left I to the left router. The right router is capable of routing packets horizontally
only from West to East, while the left router can route horizontally from East to West.
For the North and South directions, both left and right routers have their own channels
(NL, SL and NR, SR respectively).

4.3.6 Routing Algorithms
Both router architectures developed in ns-3 NoC work by default with a Dimension Order
Routing (DOR) algorithm (presented in section 2.3.4.2). They do not account for the
network load. From this point of view, the routing decision may be improved by avoiding
the hot spots from the network. The hot spots can be identified by considering the load of
each router, and by avoiding them, the network throughput can be improved. The
following two algorithms perform routing by accounting for the network load.

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

61

4.3.6.1 Static-Load-Bound Routing
Two routing algorithms which use load information to generate network routes are
proposed in [89]: the Static Load Bound (SLB) routing algorithm and the Self-Optimized
routing algorithm [94].
 Both algorithms work by performing the following generic steps (the differences
between the two will be presented later).

First, a routing function creates the set of available output channels for a certain
packet. Second, a selection function evaluates each possible route (determined by the
previous step), and selects the best one for routing the packet.

Each router will have a local load value computed for it. This will be propagated
to the router’s neighbors. The load value is called “local” because it is not used by the
router which owns it to perform its routing; it is only used to inform the neighbors about
its load. For routing, a router only takes into account the load values of its neighbors.

The propagated load value (pload) does not include only the local load but also
the load values of the neighboring routers. The reason for this approach is that, the closer
a router is to a hot spot, the higher the propagated value will be. The propagated load

value is computed as













+⋅= ∑

)(

)(
2

3

1

dirpload

dirpload
loadpload .

The local load value weights two thirds and one third of pload is given by the loads of
the neighbors. Only the neighbors that represent possible routing directions are
considered (for example, the router is not allowed to route a packet back to the direction
it came from).
 SLB evaluates all the possible routes with the relation:

routerloadedchannelbusydirectionquality −−= .
The first parameter takes the value 2, when the evaluated direction leads the

packet closer to the destination. If not, the direction parameter will be set to zero.
The second parameter is used to penalize a routing direction when its output

channel is currently busy. In case of a busy output channel, the busy channel parameter
will be set to 1. This means that a routing path with an occupied channel will have its
quality value decreased by 1.

The third parameter, loaded router, has the value 4 when the neighbor router is
too loaded. A router is considered too loaded when its load value exceeds a certain
threshold. This threshold value defaults to 50, but it can be specified by the user.

The local load is computed as: 100
)6(8 lengthdataspeed

local
load

+
= . The

parameter local represents a counter which is incremented each time a new flit is sent.
This value is divided to a maximum load value, which is specified by the speedup used to
send data flits (compared to head flits), speed, and by the length of the message, data
length.

Since all the parameters used at evaluating a possible route are fixed, this
algorithm is static in terms of how the network congestion is accounted for (all nodes
which are too loaded are treated in the same way).

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

62

4.3.6.2 Self-Optimized Routing
The Self-Optimized algorithm (SO) uses the following formula to evaluate all the
possible routes: ploadflitsremainingofdirectionquality 4% −−= .

The first parameter, direction, is used for favoring the routing paths which are
progressive, i.e. they lead to the destination. A value of 200 is considered for a
progressive direction. A non-progressive direction receives no such bonus.

The parameter %of remaining flits marks the percentage of packet flits which still
have to be sent on the selected output channel. If there is a route set for the packet, the
number of remaining flits is divided to the length of the packet. This value penalizes a
route more when it will be occupied longer.

The pload parameter is the propagated load, described above.

The local load is computed as 100
maxload

local
load = . The value local represents

the sum of all flits which are in all of the input buffers. maxload represents the sum of the
sizes of all of the input buffers.

Compared to the SLB algorithm, the SO algorithm is adaptive because it
evaluates a route by considering the current network state.

4.3.7 Switching Techniques
The following switching techniques are implemented in the ns-3 NoC simulator: Store-
and-Forward (SAF), Virtual Cut-Through (VCT) and Wormhole. Although wormhole
switching is mainly used with NoCs10, having SAF and VCT also implemented allows us
to be able to measure the performance of the NoC, given by the switching technique.

Fig. 35 The ns-3 NoC switching component

Fig. 35 presents the UML class diagram for the ns-e NoC switching component. The
abstract class NocSwitchingProtocol specifies that any switching technique must
implement the ApplyFlowControl(…) method, which determines when a given flit is

10 This is actually the only switching technique implemented in [89]

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

63

allowed to be forwarded. Since SAF switching waits an entire packet before forwarding
it, we use the m_flitCount hash table to store how many flits are still waited for every
packet for which the head flit arrived at the switch. VCT uses the m_blockedHeadFlits
member to know the head flits that remained blocked and cannot currently advance. All
the packets with blocked head flits are accumulated in the buffers of the current router
before they are allowed to be sent forward. Wormhole switching has the simplest flow
control mechanism. A flit is allowed to pass every time the output channel is ready to
transmit it.

4.3.8 Traffic Patterns
The traffic patterns currently used by the ns-3 NoC simulator are a set of communication
patterns which consider the permutations that are usually performed in parallel numerical
algorithms [26]. With these traffic patterns, the destination node for messages sent from a
certain node is always the same. Therefore, those traffic patterns do not generate a
uniform utilization of the network, but they offer high temporal locality.

 Considering that each network node is identified by a unique number, which is
binary codified on n bits,()0121 ,,...,, SSSS nn −− , we present next the traffic patterns used in

this simulator.

4.3.8.1 Bit-complement Traffic
With this traffic pattern, the destination node is obtained by complementing each bit of
the source node.

() ()01210121 ,,...,,,,...,, SSSSSSSS nnnn −−−− →

This traffic pattern determines packets to be routed diagonally. For example, in a 4x4
mesh, packets from node 1 (mesh coordinates (0, 1)) will be sent to node 14 (mesh
coordinates (3, 2)). Note that the numbers have number of bits determined by the size of
the mesh (in this case 2 bits).

4.3.8.2 Bit-reverse Traffic
This traffic pattern generates the destination address by reversing the bits of the source
address. The first bit from the source will be the last bit of the destination, the second bit
of the source becomes the last but one bit of the destination, and so on.

() ()12100121 ,,...,,,,...,, −−−− → nnnn SSSSSSSS

With this traffic pattern, some packets will be sent along one axis, while other

packets will be sent diagonally. For example, in a 4x4 mesh, packets from node 5 (mesh
coordinates (1, 1)) will be sent to node 10 (mesh coordinates (2, 2)), and packets from
node 1 (mesh coordinates (0, 1)) will be sent to node 2 (mesh coordinates (0, 2)).

Note that it is possible for a traffic pattern to generate as a destination node
exactly the source node. In such a trivial case, no traffic will actually be generated (e.g.:
node 0 would have to send packets to node 0 with this traffic pattern).

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

64

4.3.8.3 Matrix-transpose Traffic
This traffic pattern generates the address of the destination node by concatenating the
second half of the bits from the source, with the bits which make the first half of the
source.

() 









→ −

−−
−−

2

10
2

2
1

2

0121 ,...,,,...,,,,...,, nnnnnn SSSSSSSSS

For example, in a 4x4 mesh, packets from node 6 (mesh coordinates (1, 2)) will be sent to
node 9 (mesh coordinates (2, 1)).

4.3.8.4 Uniform random Traffic
Since all of the above traffic patterns do not determine a uniform utilization of the
network, the simulator also uses a uniform traffic pattern. With this traffic pattern, the
destination is generated without taking into account the source but rather using a uniform
pseudorandom number generator.

4.3.9 Network Traffic Generator
Traffic patterns like the ones presented in the above section are (stochastic) micro-
benchmarks [45] which typically show only certain network aspects. They also have the
advantage of being scalable. They are useful for evaluating a particular design parameter
of the communication architecture. For example different routing algorithms may be
compared using a uniform traffic pattern because it heavily loads the NoC. However,
they do not represent real applications. Benchmarks representing the communication
patterns exhibited by real applications, offer better accuracy for measuring the overall
performance of an application. Such benchmarks are mandatory when one needs to assess
how good a given NoC architecture is for a certain application (domain).

This section describes how ns-3 NoC is able to generate network traffic from
applications described through Communication Task Graphs (CTGs). To achieve this
goal, we have developed an ns-3 application that implements the Finite State Machine
(FSM) described in Section 4.2.2. By doing so, we have adopted the model proposed by
the Open Core Protocol International Partnership (OCP-IP) for modeling real applications
for NoC benchmarking [45]. OCP-IP currently works with some of the most prestigious
NoC research groups from the world11 to build a suitable benchmarking methodology for
Network-on-Chip simulation [95].
 The CTG describes the communications that occur between the tasks of an
application. For each application task, the CTG tells us to what tasks it sends data, how
much data is communicated to each task and from what tasks data must be received so
that the communication may be started.
 We also need to know to what cores the tasks of the application are assigned. This
information resides in the Application Characterization Graph (APCG). Based on a CTG,

11 Carnegie Mellon University, Massachusetts Institute of Technology, University of California at Berkeley
and many others

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

65

the APCG is obtained using a scheduling
algorithm. Having each task assigned to a core,
we know the time required for the execution of
every task.
 All this information allows us to
instantiate the Finite State Machine that describes
how an IP core executes instructions. The FSM is
implemented by an ns-3 application called
NocCtgApplication.
 Our simulator can use the mapping
information (obtained with any application
mapping algorithm) to assign a
NocCtgApplication to each NoC node that has an
IP core assigned to it.
 Each NocCtgApplication is programmed
with information from the CTG and the APCG so
that the FSM is able to mimic the execution of the IP core. Each CTG ns-3 application
contains a list of tasks (called task sender list or remote task list) from which it must
receive a certain volume of data before it can start its execution. Additionally, the CTG
ns-3 application holds a list with all the tasks to which it will send data (called task
destination list or local task list). After it receives all the data, the NocCtgApplication will
wait for a period of time given by the task execution time, and then it will start sending
data to all the tasks. The ns-3 application injects the data into the network in the form of
packets that have a user customizable number of flits and payload data size.

The FSM proposed in [45] (see Section 4.2.2) contains control information
regarding data dependencies. An example of such control information is: if an IP core
received enough data, let it send a certain amount of data to another specified IP core.
More control information is needed to program such Finite State Machine that models IP
cores which execute multiple tasks. The problem is to know how the emulated IP core
executes several tasks. The execution may be sequential, multithreaded or parallel. Even
if tasks are executed sequentially, the FSM must have an execution schedule. Consider
the Figure 36 APCG as example. In this case, tasks 0 and 2 are assigned to core 0. They
have no dependency between them so, from the point of view of core 0, tasks 0 and 2
could be executed in any order. Still, task 1 is assigned to core 1 and the first task sends
4000 bits to task 1 which then sends 4000 tasks to task 2. Therefore, the FSM associated
to IP core 0 must first execute task 0, send its data and then wait to receive 4000 bits from
core 1 before starting to execute task 2. If the FSM associated with IP core 0 is simply
programmed to know that it must receive data from IP core 1, trying to simulate the
communication described in the APCG will result in a deadlock. This is because IP core
0 cannot send data until it receives 4000 bits from core 1. Core 1 also must wait for 4000
bits from core 0.
 In order to avoid such kind of problems, our NocCtgApplications automatically
identifies which tasks are independent, i.e. they can execute and inject data into the NoC
immediately since they do not wait for data from any other IP core. Therefore, our
developed traffic generator allows each IP core to execute its independent tasks even if it
has other dependent tasks. Regarding task scheduling, our traffic generator simply

SRC
(Task 0)

CAN
(Task 1)

FP
(Task 2)

4000

4000

Core 0
Core 1

Fig. 36 Simple APCG with two tasks
assigned to the same IP core

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

66

programs each IP core to execute its tasks in a (random) sequential order. Our experience
gained with developing this traffic generator makes us to believe more rules are required
for programming the Finite State Machines. Otherwise, the traffic generator might not
model the real application correctly. We showed it may easily deadlock and we proposed
a simple solution to avoid this problem. However, more work is required. In our opinion
a scheduling policy is also needed for making the traffic generator accurately. OCP-IP
recently published a work in progress traffic generator [95]. Its development started in
parallel with ours, starting from the same FSM model. Their traffic generator works by
defining a lot of rules for the FSMs, which are practically equivalent to a manual task
scheduling. We argue the static, predetermined task scheduling might become
cumbersome for complex benchmarks. It however has the advantage of keeping the
traffic generator simple.

Like OCP-IP’s traffic generator, our traffic generator considers that the root CTG
tasks may have a period assigned to them. This period specifies with what frequency
these tasks produce new data. By doing so, the Communication Task Graph can be
reiterated. During application running, we can have multiple CTG iterations in flight.

Our ns-3 NoC traffic generator is mature enough to correctly model the
benchmarks we used in this thesis. This is because these benchmarks do not have more
than two tasks assigned per IP core. In this case solving the problem presented in the
above example was enough to make our traffic generator work correctly. However OCP-
IP’s traffic generator allows for more flexibility and accuracy than ours. This is why, as
further work, we plan to integrate it with ns-3 NoC.
 The following UML diagram presents the main characteristics of the CTG ns-3
application.
NocCtgApplication is an ns-3
Application that knows to inject
packets into the network based
on the information provided by
a CTG (and its associated
APCG). The user specifies how
many flits a packet contains
(m_numberOfFlits) and also the
payload size (m_flitSize) of
each flit (in bytes). The field
m_taskList contains a list with
all the tasks assigned to the IP
core represented by this ns-3
application. For each task, we
know its execution time
(m_execTime). While the helper
class TaskData is used to keep
the information about the tasks
assigned to the IP core, the class
DependentTaskData is used to
keep the information about the
tasks from the task sender and Fig. 37 UML class diagram for the ns-3 NoC network traffic

generator

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

67

destination lists (m_ taskRemoteList and respectively m_taskLocalList). Each
DependentTaskData object models a data dependency between two tasks.
 A sender (remote) task is a task that sends data to the IP core (modeled by a
NocCtgApplication object). It has a unique identifier (m_senderTaskId) and it is assigned
to another IP core which is mapped to a certain NoC node (m_senderNodeId). The
volume of data is kept in the field m_data (in bits). The task of the IP core that receives
information from the sender task is identified through an ID (m_receivingTaskId) and
through the associated NoC node (m_receivingNodeId).
 A destination (local) task is a task to which data is sent by the IP core. The IP
core’s task which sends information to the destination task is marked through the fields
m_senderTaskId and m_senderNodeId. The destination task is identified by
m_receivingTaskId and m_receivingNodeId. Note that m_receivingNodeId is used by the
NocCtgApplication to know to what NoC node it has to send packets.
 The CTG ns-3 application starts in a waiting state. First, it waits to receive all the
data from the tasks which send packets to the IP core. The field m_receivedData counts
the bits received. The application is automatically notified when it receives packets
through the callback FlitReceivedCallback(). When all data is received (m_receivedData
= m_totalData), the application will simulate that it is executing. It will therefore wait for
an amount of time equal to the execution time. Then, the application will start injecting
packets into the network until it sends all its data. At each network clock cycle one flit is
injected. The application schedules itself for another data transmission using the method
ScheduleNextTx(). As mentioned earlier, non-dependent tasks are executed without
waiting.
 Each NocCtgApplication is executed for a specified number of iterations
(m_iterations). A CTG iteration ends when all the data transmitted by all the IP cores has
been received by the destination NoC nodes. New CTG iterations start after a specified
CTG period (m_period). We may have multiple CTG iterations running at a moment in
time.
 NocCtgApplicationHelper is a helper class that allows the user to easily
instantiate and install CTG ns-3 applications. It requires the user to specify the tasks
assigned to the IP core, the task sender and destination lists, the CTG period and the
number of CTG iterations.
 A runnable instance of the ns-3 NoC simulator, called NocMappingSimulator uses
the XML interface described in section 4.2.3 in order to get the network traffic pattern of
an application described through a CTG. NocMappingSimulator uses [84] to read the
required information from XMLs. It accesses the CTG, APCG and mapping data and
then, based on all this information, it installs CTG ns-3 applications which simulate the
traffic pattern of an application described through a Communication Task Graph.
Obviously, the NocMappingSimulator also configures the available architectural
parameters of the simulated Network-on-Chip.

4.3.10 Power Consumption and Area Estimation
This section describes how we integrated ORION 2.0 [96] into ns-3 NoC. ORION is a
power and area simulator for Networks-on-Chip. It is developed at Princeton University
for almost ten years. ORION offered one of the first power models for NoCs and it is
now widely used by the research community for estimating NoC power consumption.

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

68

The initial ORION version offered a power model for NoC routers. Dynamic and leakage
power models for the router’s basic components (buffers, crossbars and arbiters) were
proposed. ORION 2.0 is the latest version of this simulator. Compared to the initial one,
it brings substantial improvements. Some of the most important are: link and clock power
models and router and link area models. The technology models were also updated. Three
operating types (high, normal and low power modes) are available at 90 nm and 65 nm
technologies, scaling down up to 32 nm.

There are three major power components [97]: dynamic power, short circuit
power and leakage power. Dynamic power is the power due to charging circuit nodes.
Also called active power, this is used while the circuit is performing its functions. Short
circuit power appears because of temporary short circuit current path while switching. It
is usually small and thus ignored by architects. Leakage power is primarily due to an
unwanted sub-threshold current in the transistor channel, when the transistor is turned off.
Hence, leakage power in unintended as it does not contribute to the circuit’s functions. As
technology goes below 65 nm, leakage power becomes more important, as compared to
dynamic power.

ORION formulates dynamic power as fEP ⋅= , where energy 2
ddVCE ⋅⋅= α .

f is the clock frequency, α the activity factor, C the load capacitance and ddV the supply

voltage. The clock dynamic power model for clock, registers, buffers, allocators, arbiters
and links are all obtained by defining how the load capacitance is computed. For
example, the link load capacitance is ccgndinl CCCC ++= .

Parameter inC is the input capacitance of the next repeater, gndC and ccC the ground and

coupling capacitance of the wire. The values for different load capacitance components
are obtained from different industry data sheets.

Leakage power is computed by measuring the total leakage current. ORION
formulates this current as)),(),((),(),('' siIsiIsiWsiI gatesubleak +⋅= .

'
subI and '

gateI are the sub-threshold and respectively gate leakage currents, per unit

transistor width, for a specific technology.),(siW is the effective transistor width of

component i at input state s. For each i and s, '
subI and '

gateI were obtained through

simulations using models at 65 nm technology.
Router and link area is computed using a layout model for logic gates. Router area

is estimated by summing the areas of all its building blocks (plus 10%, representing the
spaces between the blocks). The area of a block is computed by decomposing it in its
logic gates.

Buffer’s area is computed by considering the word line and bit line lengths of the
FIFO (First In, First Out) buffer: linebitlinewordfifo LLArea −− ⋅= , where

))(2(wwrcelllineword dPPwFL ++=− and))((wwrcelllinebit dPPhBL ++=− .
B is the buffer size, in flits. F is the flit size, in bits. The memory cell width and height is
given by wcell and hcell (dw accounts for wire spacing). The number of read and
respectively write ports are noted with Pr and Pw.

Link (wire) area is computed as follows: wwwlink sswFArea ++=)(, where ww is

the wire width and sw is the spacing between wires.

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

69

 We integrated the ORION 2.0 library in our developed ns-3 NoC simulator.
ORION keeps all its parameters into a single configuration file (SIM_port.h). We kept
the default values for all parameters, except a few, which are given by our simulator, at
runtime. For example, we consider the designed NoC at 90 nm technology. Another
example is the voltage supply, set to 1 Volt. The NoC clock frequency, flit and buffer
size are set by ns-3 NoC. The other parameters set by ns-3 NoC are related to router
architecture: number of router input and output ports and number of virtual channels.
This allows us to model more accurately each ns-3 NoC router. For example, the Irvine
router, as compared to the four way router, has a different number of input ports. The
number of virtual channels is currently set to zero because we do not have yet virtual
channels in ns-3 NoC.
 The following UML diagram shows how ORION library interacts with ns-3 NoC.

Fig. 38 ORION integration in ns-3 NoC

ORION is called by ns-3 NoC each time a flit is routed and each time a flit is transmitted
through a link. For every flit, ns-3 NoC gets the dynamic and leakage power needed to
route and transmit it. We use the m_dynamicPower and m_leakagePower members to
sum all the measured power values. By counting the flits for which power was measured
(m_powerCounter), ns-3 NoC can provide at any moment the average power consumed
by all its routers and links. The power consumed by the entire NoC is computed with the
methods from the NocTopology class. The total power consumed by the NoC
(GetTotalPower()) is obtained by summing the dynamic and leakage powers. Similarly,
the area occupied by routers and channels is computed. The GetArea() method from
NocTopology class computes the area of the entire Network-on-Chip. This method
accounts for all NoC routers and channels. If we also take into consideration the IP cores’
area, we will know the area occupied by the entire System-on-Chip (SoC). The same
rationing applies for power consumption. Obviously, since we also measure the

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

70

application runtime, we can compute the energy consumption. Energy is measured by
multiplying the total (average) power by application runtime.

4.3.11 Experimental Results
The ns-3 NoC simulator keeps statistics regarding the number of flits and packets
injected into the network. Using ORION, our simulator can measure NoC power
consumption and area. The latency of the packets is measured according to the definition
from [25]: “the latency of a network is the time required for a packet to traverse the
network, from the time the head of the packet arrives at the input port to the time the tail
of the packet departs the output port”. The minimum and maximum packet latencies are
also collected. All those statistics are automatically stored into a database.
 We present next some preliminary simulation results published in [98], were we
evaluated the potential of the NoC Irvine architecture and were we showed the impact of
the buffers’ size on NoC’s performance. The following results express the network
performance, through the average latency of the packets, as a function of packet injection
probability. The synchronous version of the simulator was used. During the simulation,
the first 1000 cycles were considered warm-up cycles [25]. Packets were injected into the
network for 10000 cycles. Only the packets injected after the warm-up cycles were
collected into the statistics. The Irvine architecture was used, with XY routing, wormhole
switching, input channel buffers of 9 flits in size and packets of 8 flits in length. We set
the flit size to a few bytes. The effects of speeding up the data flits, like it is done in [90],
are shown it the following charts.
 Fig. 39 shows how, on a 8x8 Irvine NoC, the average packet latency decreases as
data flits are sent through the network using a clock frequency which is two or four times
higher than the one used for advancing the head flits.

Fig. 39 The average packet latency on a 8x8 Irvine NoC architecture, while the speed with which data

flits advance in the network varies for 4 different communication patterns

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

71

With the matrix-transpose traffic pattern and using a 4 times higher clock

frequency for the data flits, the packet’s average latency remains close to the zero-load
latency, as long as the injection probability is lower or equal than 0.9. The Irvine
architecture helps at decreasing the network congestion. This is also visible for the other
three traffic patterns. The network is significantly less congested when data flits are
transmitted faster than head flits. For the bit-complement traffic pattern, the average
packet latency is fairly higher because each node injects packets. This is not true with the
other traffic patterns because they can create traffic from a certain node to exactly the
same node, which is not injected into the network. Therefore, we believe that this
behavior might contribute to the bit-complement’s higher packet latency.

We did similar simulations on a 4x4 Irvine NoC, too. The simulations on an 8x8
Irvine NoC took approximately 10 times more time than the simulations done on the 4x4
network. The longest simulation on a 4x4 network took around 2 minutes and a half (this
is approximately 10 times faster than NoCSim [89]).

In order to further test the speed of the simulator, some simulations were also
performed on a 32x32 2D mesh (1024 nodes). Because the simulation would take
considerable much more time on such a big network, the simulation was run for only 10
cycles, with no warm-up period. The longest simulation took around six minutes and a
half on a PC having the following characteristics: Intel quad-core at 2.66 GHz, 4 GB
DRAM and a Linux Operating System (Ubuntu 9.10).

Fig. 40 Bit-Complement traffic, 32x32 Irvine NoC, wormhole switching, XY routing

The following simulation result shows how the ns-3 NoC simulator can be used at

evaluating the impact of the available buffering resources on the NoC’s performance.

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

72

Fig. 41 The average packet latency on a 4x4 Irvine NoC architecture, while the size of the input

buffers varies uniformly

As it can be observed, the more buffering resources are available, the better the
performance of the NoC architecture gets. As expected, the size of the input channel
buffers becomes more important as the number of packets injected into the network
increases. The simulations were run using the uniform random traffic pattern, for 10000
clock cycles, with 1000 warm-up cycles. At each cycle, a flit can be injected in any node
of the network, with a certain probability of injection. XY routing with wormhole
switching has been used on a 4x4 Irvine NoC architecture. No speedup has been used for
the data flits. Each packet has 9 flits, and the size of the input channels was varied
uniformly, from 2 up to 8 flits.
 In [92] we showed how the NoC performance varies on topologies like: 2D mesh,
2D torus, 3D mesh, 3D torus and hypercube. For example, the following figure shows the
buffer size influence on the performance of a (2x2x2x2) hypercube. Unless specified
otherwise, the simulator’s parameters have the same values as before.

0

500

1000

1500

2000

2500

0 0.2 0.4 0.6 0.8 1

Packet injection probability

A
v

e
ra

g
e

 p
a

ck
e

t
la

te
n

cy
 [

cy
cl

e
s]

Buffer size = 2

Buffer size = 3

Buffer size = 4

Buffer size = 5

Buffer size = 6

Buffer size = 7

Buffer size = 8

Buffer size = 9

Buffer size = 10

Fig. 42 The average packet latency on a hypercube NoC architecture, while the size of the input

buffers varies uniformly

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

73

Like in the case of the 4x4 2D mesh, the Network-on-Chip’s performance improves as
the buffer size increases. We can also observe how the hypercube’s increased
connectivity decreases approximately four times the average packet latency, as compared
to a 2D mesh with the same number of NoC nodes.
 We show next how the NoC’s average packet latency decreases as we increase the
node degree by switching from a 2D mesh to a 3D mesh and then to a hypercube. The
simulations were made using the uniform random traffic pattern.

0

2000

4000

6000

8000

10000

12000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Packet injection probability

A
v
e

ra
g

e
 p

a
ck

e
t

la
te

n
cy

 [
cy

cl
e

s]

8x8 2D mesh 4x4x4 3D mech 4x4x2x2 hypercube

Fig. 43 Average packet latency on 64 node mesh NoCs, with 2, 3 and respectively 4 dimensions

We observe a significant increase in the NoC’s performance when using a 3D mesh. The
performance increases even further when placing the 64 nodes in a hypercube topology.
The same behavior can be observed on torus topologies.

0

200

400

600

800

1000

1200

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Packet injection probability

A
v
e

ra
g

e
 p

a
ck

e
t

la
te

n
cy

 [
cy

cl
e

s]

4x4 2D torus 4x2x2 3D torus 2x2x2x2 4D hypercube torus

Fig. 44 Average packet latency on 64 node torus NoCs, with 2, 3 and respectively 4 dimensions

Note that since Dimension Order Routing is not deadlock-free on torus topologies and
because ns-3 NoC does not yet support virtual channels, we increased the size of the

Designing a Unified Framework for the Evaluation and Optimization of NoC Application
Mapping Algorithms

74

input buffers until deadlock was avoided. Thus, we used buffers with a size of 55 flits
(instead of 9). These big buffers explain why the average packet latency appears to be ten
times lower on torus topologies than on meshes.

4.4 Summary
We presented in this chapter UniMap, our developed unified framework for the
evaluation and optimization of Network-on-Chip application mapping problems.
UniMap’s design is flexible, modular, reusable and scalable.

Using XML schemas we defined a model for representing real applications
(through Communication Task Graphs and Application Characterization Graphs) and
Network-on-Chip architectures. Any researcher can easily import his application into our
framework. We will show in Chapter 5 the benchmarks integrated and used by us.

UniMap allows anyone to easily implement scheduling and/or mapping
algorithms. Then these algorithms can be evaluated and compared with the algorithms
already implemented in our unified framework. UniMap integrated state of the art NoC
application mapping algorithms, like Simulated Annealing and Branch and Bound. Using
the jMetal library we also make available some of the best single-objective and multi-
objective evolutionary algorithms currently available in the research community. As we
will prove in Chapters 6 and 7, UniMap can also be used to optimize Network-on-Chip
application mapping algorithms.

The Network-on-Chip application mappings can be evaluated in UniMap using
either analytical models or a modular and scalable NoC simulator. Our developed ns-3
NoC simulator is highly parameterizable. It currently allows the user to specify: the
packet size, packet injection rate, buffer size, network size, switching mechanism
(Store-and-Forward, Virtual Cut-Through and Wormhole), routing protocol (XY, YX
and two adaptive protocols that consider the network’s load), network topology
and traffic patterns. It can evaluate the simulated NoC in terms of network
latency and throughput. ns-3 NoC can instantiate any k-ary d-cube network topology. It
also contains a network traffic generator based on CTGs and APCGs. Our simulator can
also estimate power consumption and area using the state of the art ORION 2.0 tool.

Besides the NoC simulator, UniMap can model Processing Elements using Finite
State Machines. Therefore entire System-on-Chip architectures can be modeled with our
UniMap framework. We will demonstrate this in Chapter 8.

UniMap is also capable of running on High Performance Computing systems. As
we will show in Chapter 8, this is a very important aspect, a requirement, when
addressing the Design Space Exploration problem.

For the rest of this thesis we will present how we made use of UniMap. We
believe our unified framework has big potential and since it is open source it could help
other researchers as well. This is even more important, knowing the Network-on-Chip
research area is still at the beginning and powerful tools are still needed.

More details regarding UniMap’s design are available in [85].

“Light is the task where many share the toil.”

Homer

75

5 Benchmarks

In the previous chapter we presented our developed unified framework for the evaluation
and optimization of Network-on-Chip application mapping algorithm. UniMap uses as
input traffic patterns for real applications, described through directed graphs. As stated in
[45] Network-on-Chip benchmarking is still an open problem. The Open Core Protocol
International Partnership (OCP-IP) is currently working to model real applications for
NoC benchmarking [95].

This chapter presents the benchmarks used in this PhD thesis, for studying the
Network-on-Chip application mapping problem. All benchmarks presented next describe
real applications, designed for Systems-on-Chip (SoCs). These applications are modeled
using Communication Task Graphs (see Section 3.1). We gathered some of the most used
CTGs and APCGs by the NoC research community and integrated them in UniMap,
through a common XML representation. The communication graphs are taken from the
Embedded Systems Synthesis Benchmark Suite (E3S) [56] and from some of the most
cited papers from the field of Networks-on-Chip. We also make our contribution to
Network-on-Chip benchmarking, by proposing two new Communication Task Graphs for
a H.264 video decoder.

As compared to the general CTG definition from [3], we specify that a
Communication Task Graph should also have a period assigned to it. The period of a task
graph is defined as the amount of time between the earliest start times of its consecutive
executions [44]. Such information is used in E3S (see section 4.2.1.2.2). The period
allows us to specify the application bandwidth requirements. Typically, the period is
measured in seconds. Let us consider a CTG with period of 0.1 seconds. If a graph arc
between two tasks, T1 and T2 has a weight of 10 bits (communication volumes are
expressed in bits), it will mean that the communication between the two tasks will require
a bandwidth of 100 bits/second.

We begin by presenting the Communication Task Graphs for each real
application. Then we show the Application Characterization Graphs, i.e. how we group
the application tasks in order to assign them to IP cores.

5.1 Embedded System Synthesis Benchmarks Suite (E3S)
This benchmark suite contains task graphs for five embedded applications:
automotive/industrial, consumer, networking, office automation and telecommunications.
Each application is described by a set of task graphs. There is a version of each task
graph for three kinds of computing systems: distributed, wireless client-server and
System-on-Chip. We use in our research only the Communication Task Graphs designed
for Systems-on-Chip.

This benchmark suite is based on the Embedded Microprocessor Benchmark
Consortium (EEMBC) [80] benchmarks suite. It contains 34 embedded processors that
are characterized through: execution time and power consumption (measured on 47
tasks), die size, price, operating frequency and other information. E3S also contains
communication resources that model different buses.

Benchmarks

76

Except “src” and “sink”, each task from the E3S Communication Task Graphs
represents an EEMBC benchmark. The tasks “src” and “sink” are just dummy tasks that
model a data producer and, respectively, a data consumer.

We also have to note that E3S task graphs also contain hard- and/or soft-real-time
deadlines. Since we do not work with real-time constraints, we disregard deadlines from
E3S task graphs.

5.1.1 Automotive/industrial Application
The automotive/industrial application is made of four Communication Task Graphs: CTG
0, 1, 2 and 3.
 CTG 0 models an embedded automotive system with two Controller Area
Network (CAN) interfaces, a basic integer and floating point module and an actuator
driven by Pulse Width Modulation (PWM) signal.

The first CAN interface (can1) simulates the processing of Remote Data Request
(RDR) messages which are intended for the basic integer and floating point module (fp).

The floating point module computes the function)arctan(x using the telescoping

series:
)(

)(
)arctan(

2

2

xQ

xP
xx ⋅= , where P and Q are two polynomials and]1,0[∈x .

The second CAN interface processes the RDR messages originated from the fp
module and sends them to a PWN driven actuator. The actuator commands a stepper
motor. PWN signals are simulated and it is verified, once per PWM cycle, if the motor
reached the commanded position.

Fig. 45 auto-indust CTG 0 (period: 0.0009 seconds)

 CTG 1 describes an embedded automotive system with an Infinite Impulse
Response (IIR) filter and an inverse Discrete Cosine Transform (iDCT) module.
 The IIR filter tests the processor’s capability of performing multiply-accumulates
and rounding.
 The iDCT module performs image recognition by applying an inverse discrete
cosine transform on an input data matrix set using 64-bit integer arithmetic.

Fig. 46 auto-indust CTG 1 (period: 0.00045 seconds)

 CTG 2 models a system with: Finite Impulse Response (FIR) filter, Fast Fourier
Transform (FFT) module, matrix arithmetic module, Inverse Fast Fourier Transform
(iFFT) module, angle to time convertor, road speed calculation and table lookup and
interpolation.
 The FFT module performs a power spectrum analysis of a time varying input
waveform.
 The matrix arithmetic module performs a LU decomposition of a square matrix,
computes the determinant of the input matrix and the cross product with another matrix.
 The iFFT module does a time domain analysis of an input frequency spectrum.

Benchmarks

77

 The angle to time convertor measures the delays between the pulses received from
a toothed wheel (gear) on the crankshaft of an engine. These pulses represent the
crankshaft’s angle and the delay between them its angular velocity, i.e. engine’s speed.
 Road speed is computed based on differences between timer counter values.
 Table lookup and interpolation is used by in engine controllers, anti-lock brake
systems or any other system where data must be directly accessed, not computed.
Sensitive data is thus stored in a table. In order to keep the size of the table small, only
some data points are memorized. The rest of them are obtained through interpolation.

Fig. 47 auto-indust CTG 2 (period: 0.0009 seconds)

 CTG 3 contains the following modules: pointer chasing (ptr), cache “buster” and
tooth to spark.
 Pointer chasing performs a lot of pointer manipulation: a double linked list is
searched for entries matching a given items.
 Cache “buster” is an application that uses data and function pointers so that data
and code locality does not occur.
 Tooth-to-Spark is part of the Engine Control Unit (ECU) and performs real-time
processing of air/fuel mixture and ignition timing. It controls the fuel injection and
ignition in the engine.

Fig. 48 auto-indust CTG 3 (period: 0.0009 seconds)

5.1.2 Consumer Application
The consumer application is composed of two modules: an image acquisition module
from a video camera (CTG 0) and an image printer module (CTG 1).
 The tasks from CTG 0 deal with image acquisition, filtering (applied on the red,
green and blue color components of the image), color space conversion (from RGB to
YIQ), compression using JPEG and finally storage.

Benchmarks

78

Fig. 49 consumer CTG 0 (period: 0.06 seconds)

Fig. 50 consumer CTG 1 (period:

0.015 seconds)

 CTG 1 models image retrieval from the data storage, JPEG image decompression,
conversion from RGB color model to CMYK color model and the printing. The images
to be printed may also be viewed on a display.

5.1.3 Networking Application
This application models an Internet network router. An Open Shortest First Path (OSPF)
task (that represents CTG 0) implements Dijkstra’s shortest path first algorithm to build a
routing table. Route lookup is then performed for network packets using an IP lookup
mechanism based on a Patricia Tree. The packet flow (pf) task changes the packet header
to mark the passage of that packet through the router.
 CTG 1 models a router through which packets with size 512 kB pass.

Fig. 51 networking CTG 1 (period: 0.00135 seconds)

 CTG 2 models a router through which packets with size 1 MB pass.

Fig. 52 networking CTG 2 (period: 0.0009 seconds)

CTG 2 models a router through which packets with size 2 MB pass.

Fig. 53 networking CTG 3 (period: 0.00135 seconds)

Benchmarks

79

5.1.4 Office Automation Application
The office automation application
contains tasks for image and text
processing, performed by a printer.

The rotate task performs a
bitmap rotation algorithm to create
a 90° rotation of an image. This is
useful for printers, when switching
between portrait and landscape
modes.

The dithering task (dith)
executes the Floyd-Steinberg Error
Diffusion dithering algorithm to
convert a grayscale image into a
form ready for printing.

Text parsing is performed
by the text task. It represents a
printer application that parses an interpretative control language like PCL or PostScript.

5.1.5 Telecommunication Application
The E3S telecommunication application is composed of nine Communication Task
Graphs. The following tasks are employed: autocorrelation (ac), bit allocation (fpba),
convolutional encoder (ce), fast Fourier transform (fft) and a GSM Viterbi decoder (gsm).
 CTG 0 performs autocorrelation and convolutional encoding. Autocorrelation is a
basic analysis tool in signal processing. In telecommunications, it is used for speech
compression and recognition, channel estimation, sequence estimation, system
identification and other applications. A convolutional encoder is installed at the sender. It
adds redundancy to a transmitted electromagnetic signal to support forward error
correction on the receiver side.

Fig. 55 telecom CTG 0 (period: 0.001 seconds)

 CTGs 1 and 2 are identical. Each one of them contains the following tasks:
autocorrelation, convolutional encoder, bit allocation and Fast Fourier Transform (FFT).
 A bit allocation algorithm is used for Digital Subscriber Loop (DSL) modems that
use Discrete Multi-Tone (DMT) technology (which partitions a channel into independent
subchannels, called carriers). Such an algorithm is required to allocate a number of bits to
the channel’s carriers, according to each carrier’s measured Signal to Noise Ratio (SNR).
 Fast Fourier Transform is used for a frequency analysis of signal. In
telecommunications, FFT allows for: filtering frequency-dependent noise or interference
of a transmission, identifying the information content of a frequency-modulated signal
etc.

Fig. 54 office-automation CTG 0 (period: 0.03 seconds)

Benchmarks

80

Fig. 56 telecom CTG 1 (period: 0.001 seconds)

Fig. 57 telecom CTG 2 (period: 0.001 seconds)

 CTG 3 is a simple graph, which contains just a Fast Fourier Transform task.

Fig. 58 telecom CTG 3 (period: 0.001 seconds)

CTG 4 is a simple graph, which contains only a bit allocation task.

Fig. 59 telecom CTG 4 (period: 0.001 seconds)

 The last Communication Task Graphs are identical. They employ a Viterbi
decoder for GSM cellular telephony. The Viterbi decoder exploits a data stream’s
redundancy in order to recover the originally transmitted data. Such a decoder is placed
on the receiver side, while on the sender side of a transmission is placed a convolutional
encoder.

Fig. 60 telecom CTG 5 (period: 0.00033 seconds)

Fig. 61 telecom CTG 6 (period: 0.00033 seconds)

Fig. 62 telecom CTG 7 (period: 0.00033 seconds)

Fig. 63 telecom CTG 8 (period: 0.00033 seconds)

5.2 Audio Video Benchmarks
We present next a suite of benchmarks related to audio and/or video processing. Like
E3S benchmark suite, these Communication Task Graphs are used by the research
community for developing and evaluating Network-on-Chip application mapping
algorithms.

Benchmarks

81

5.2.1 MultiMedia System (MMS)
A generic Multimedia System (MMS) was used in [52], [40] to test the performance of a
Branch and Bound mapping algorithm on a real application. MMS is an audio video
system. It contains an MP3 audio encoder, an MP3 audio decoder, an H.263 video
encoder and an H.263 video decoder.
 The MMS application was partitioned into 40 concurrent tasks. They were
assigned to 16 cores in [52] and to 25 cores in [40].
 We present next the Communication Task Graphs for the MMS application,
which we derived from the Application Characterization Graphs (APCGs) [3]. The
communications between tasks mapped on the same cores are ignored. Therefore, our
MMS CTGs are partial. They do not show all the communications between tasks but, all
the communications required for building a 16 cores and 25 cores APCG are available.
 CTG 0 was obtained from the MMS APCG from [52]. CTG 1 was obtained from
the MMS APCG from [40]. We observe a single difference between the two CTGs: in
CTG 0, task VLD (Variable Length Decoding) sends data to IDCT (Inverse Discrete
Cosine Transform), while in CTG 1, VLD sends data to task IQ (Inverse Quantization).
Thus, we believe the two CTGs are essentially the same. However, in order to be
compatible with previous research, we use both of them, exactly like in [52], [40].

Fig. 64 MMS CTG 0 (period: 0.0009765625 seconds)

Fig. 65 MMS CTG 1 (period: 0.0009765625 seconds)

Benchmarks

82

We present next some of the real applications introduced by Murali et al. with the
SUNMAP tool [71] and the NMAP application mapping algorithm [61], in the field of
Network-on-Chip research.
 Based on their core graphs12, we derived the Communication Task Graphs for the
following applications: Picture-in-Picture (PIP), MPEG-4 decoder, Multi-Window
Displayer (MWD) and Video Object Plane Decoder (VOPD).

5.2.2 Picture-in-Picture (PIP)
The core graph for the Picture-in-Picture application was obtained by Murali et al. from
[99]. This application takes two video streams from an input memory (Inp mem) and
superimposes them. The main video stream covers the entire screen of a TV, except a
small window, where the secondary video stream is shown. Therefore, the secondary
video stream is scaled horizontally and vertically (tasks hs and vs). Two advanced
address generators, called jugglers, are used to write video data into the memory, at any
position, with an arbitrary shape. They allow mixing the video streams. From the
memory, the Picture-in-Picture video stream is output on the TV display.

Fig. 66 PIP CTG (period: 0.0009765625 seconds)

5.2.3 MPEG-4 Decoder
The MPEG-4 decoder application was obtained from an architecture implementation of
the MPEG-4 decoding system, including data transport bandwidth in MB, available in
[100].
 This system is made of: one Double Data Rate (DDR) Synchronous Dynamic
Random Access Memory (SDRAM), two Static Random Access Memories (SRAMs),
one Very Long Instruction Word (VLIW) media CPU, one Reduced Instruction Set
Computing (RISC) processor, an audio Digital Signal Processor (DSP), a 3D graphics
module (for rasterization), a Context Addressable Memory (CAM) used by the RISC
CPU, a Binary Alpha Block (BAB), an image decompression module (for inverse
discrete cosine transform and other operations) and a Motion Compensation and
Estimation (MCE) module (with up-sampling and padding). A bit stream of input data is
given to the system, which has two outputs: one for the decoded audio stream and another
for the decoded video stream.
 We observed in [100] that the RISC CPU communicates 500 MB/s with the
memory and the inverse discrete cosine transform only 250 MB/s, with the same

12 Core graph is a synonym for Application Characterization Graph (APCG)

Benchmarks

83

memory. However, in the core graph used by Murali et al. the two communication
volumes are reversed. Also, it is unclear to us why Murali et al. present a two-way
communication between the audio and video outputs (au and vu) and the DDR SDRAM.
In our opinion, data should flow only from the DDR SDRAM to the two outputs. In order
to be able to reproduce the research results, we kept the graph structure like Murali et al.
did.

Fig. 67 MPEG-4 CTG (period: 0.0009765625 seconds)

5.2.4 Multi-Windowed Displayer (MWD)
The Multi-Windowed Displayer [99] is a more complex Picture-in-Picture application.
The video background contains a zoomed-in part of the smaller video stream (presented
as picture-in-picture). A small square, which may be moved and resized, allows selecting
the part of the smaller video stream that will be zoomed-in. Additionally, an Internet
browser is also shown on the display.
 This application involves noise reduction (nr), horizontal and vertical scaling (hs,
vs), mixing (jug1 and jug2), sharpness enhancement (se) and graphics blending. The
noise reduction coprocessor accesses the memory to perform infinite impulse response
filtering.

Fig. 68 MWD CTG (period: 0.0009765625 seconds)

5.2.5 Video Object Plane Decoder (VOPD)
An MPEG-4 video stream may be divided into hierarchical layers. The lowest layer is
called the Video Object Plane (VOP) layer. It corresponds to a single video stream frame.
The VOP is used to represent rectangular (plane) frames or an arbitrary-shaped plane.
 A Video Object Plane Decoder (VOPD) is presented in [100]. A Context-based
Arithmetic Decoder (CAD) parses the input stream and retrieves the context information
from the shape decoder, through a local memory buffer. Then, it writes the output Binary
Alpha Block (BAB) into a local memory. A shape decoder module reads the computed

Benchmarks

84

BAB and the referenced BABs and calculates the context value. The newly calculated
BAB is written into the same memory. The output stream obtained by variable length
decoding is sent into a pipeline with inverse scan, AC/DC prediction (which uses some
local memory), inverse quantization and inverse Discrete Cosine Transform. Another
module provides motion compensated VOP reconstruction and padding. Additional
memory is used to keep the reconstructed output and motion compensated prediction
data.
 A core graph for this VOPD application has been proposed by Murali et al. Based
on it, we derived our VOPD CTG. We observed that compared to [100], where the stripe
memory is accessed only by the AC/DC prediction module, this memory module is
accessed in the core graph by both AC/DC prediction and inverse quantization modules.
Our CTG respects the communication from the core graph of Murali et al. (so that we
maintain compatibility with their research).

Fig. 69 VOPD CTG (period: 0.0009765625 seconds)

5.2.6 H.264 Decoder
Finally, we make our contribution to Network-on-Chip benchmarking, by proposing two
new Communication Task Graphs. We obtained the two CTGs based on the research
from [101], where the mapping of a H.264 decoder on a multiprocessor architecture is
presented.
 CTG 0 presents a H.264 decoding system that uses data partitioning: the video
stream is equality divided onto more CPUs, each one of them running a H.264 decoder.

Fig. 70 H.264 CTG 0 (period: 0.0009765625 seconds)

 CTG 1 presents a H.264 decoding system that uses functional partitioning: the
tasks of the H.264 decoder are placed onto different CPUs.

Benchmarks

85

Fig. 71 H.264 CTG 1 (period: 0.0009765625 seconds)

With the functional partitioning approach, the messages between the decoder tasks are
communicated. With data partitioning, data dependencies among data partitions are
communicated. It is shown in [101] that, with data partitioning, a significant bandwidth
reduction is obtained.

5.3 Application Characterization Graphs
For all of the above Communication Task Graphs, we have assigned the tasks to IP cores.
By doing so, we obtained an Application Characterization Graph (APCG) [3], for each
application. All E3S benchmarks plus Picture-in-Picture had each task assigned to a
different core. For the rest of the benchmarks, at least two tasks were associated with the
same IP core. We present next only the APCGs that have at least two tasks scheduled on
the same processing element (marked by a dotted rectangle). Note that the
communications between the tasks placed on the same IP core are neglected because they
do not generate network traffic.

MMS APCG 0 has 16 IP cores and corresponds to MMS Communication Task
Graph 0. Application Specific Integrated Circuits (ASICs) are used for executing tasks
like: bit reservoir, iterative encoding, ME, demultiplexing and synchronization. Digital
Signal Processors (DSPs) run Huffman decoding, discrete cosine transform, inverse
discrete cosine transform, quantization, inverse quantization, VLD, FP, filtering, MDCT,
IMDCT and SUM. Memories are used for buffering and FS (0 to 5) tasks. Finally, a
general purpose processor executes MC and ADD.

Benchmarks

86

Fig. 72 MMS APCG 0

 MMS APCG 1 has 25 cores that execute the tasks described by MMS CTG 1. The
same kind of processors like for MMS APCG 0 are used.

Benchmarks

87

Fig. 73 MMS APCG 1

 MPEG-4 APCG was obtained by grouping the tasks that deal with memory
accesses. Thus, “sdram rd” task is grouped with “sdram wr”, “sram1 rd” with “sram1 wr”
and “sram2 rd” with “sram2 wr”. MPEG-4 APCG has 12 IP cores.

Benchmarks

88

Fig. 74 MPEG-4 APCG

 The Multi-Window Displayer APCG was obtained like MPEG-4 APCG, i.e. by
placing on the same core the tasks which do memory reads and writes. MWD APCG has
12 IP cores.

Fig. 75 MWD APCG

 From VOPD CTG we obtained two APCGs: APCG 0 has 16 cores and APCG 1
has 12. The Video Object Plane memory tasks are placed on the same IP core in both
APCGs. In comparison with APCG 0, APCG 1 groups more tasks from the upper part of
the graph.

Fig. 76 VOPD APCG 0

Fig. 77 VOPD APCG 1

From H.264 CTG 0 we created APCG 0, with 14 cores, by grouping the two tasks

for accessing the intra mode memory.

Benchmarks

89

Fig. 78 H.264 APCG 0

We also obtained an APCG with 16 cores, from H.264 CTG 1.

Fig. 79 H.264 APCG 1

5.4 Summary
We presented in this chapter the CTGs and APCGs used to model real applications for
Network-on-Chip benchmarking. We integrated into UniMap the E3S benchmark suite
and some of the currently most used benchmarks in the NoC research field. Any
researcher using UniMap can now benefit from these benchmarks.

We also contributed with two versions of a H.264 video decoder application.
Our systematic approach should help other researchers that work on Network-on-

Chip benchmarking.

“To climb steep hills requires a slow pace at first.”

William Shakespeare

90

6 Optimized Simulated Annealing for Network-on-Chip
Application Mapping. A Domain-Knowledge Approach

We introduced in Chapter 3 Simulated Annealing (SA) (see Section 3.3.1) [102], one of
the first heuristic algorithms used to address the Network-on-Chip application mapping
problem.

The advantages of Simulated Annealing are given by its ease of implementation,
its applicability to many combinatorial optimization problems and the ability to give
reasonably good solutions [60]. This algorithm is used in domains like Biology,
Telecommunications, Geology, Electronics, Medicine and Engineering [103], [104].

However, the parameters of the algorithm must be carefully chosen, since SA can
easily run for a very long time until it gives a suitable solution. Because Simulated
Annealing is a very general algorithm, several choices must be made in order to
implement it for a particular problem. These choices are categorized in [105] as generic
and problem-specific. A generic choice refers to SA’s input parameters: initial and final
temperature, cooling schedule, number of iterations done per temperature and stopping
condition. A problem-specific choice is related to the neighborhood structure, which
specifies how the search space is explored.

This chapter presents a domain-knowledge approach to Network-on-Chip
application mapping problem. We describe an Optimized Simulated Annealing (OSA)
[106] algorithm that we designed for the topological placement of cores onto NoC nodes.
OSA uses an application- and network-based exploration of the search space. Using
knowledge about communication demands, the IP cores are clustered implicitly and
dynamically. We compare OSA with the above mentioned simulated annealing technique
and with a branch and bound algorithm, too. We focus on algorithm speed, memory
consumption and solution quality.

6.1 Related Work
Simulated Annealing was one of the first algorithms used to address the NoC application
mapping problem [40]. The objective was to minimize (under bandwidth constraints) the
communication energy for a 2D square NoC mesh with XY routing and wormhole
switching.
 Hu and Marculescu compare Simulated Annealing with a Branch and Bound (BB)
approach and they find out that SA is capable of finding mappings better than the ones
found with Branch and Bound. However, SA has the disadvantage of speed: the
simulation results from [40] show that BB is tens of times faster the SA.
 Both SA and BB algorithms were further developed in [52], where the mapping
problem is treated in conjunction with the routing problem. XY routing is no longer
considered as the NoCs routing algorithm. The mapping algorithms are capable of
generating the routing tables for each network node, in a deadlock- and livelock-free
manner, using Odd-Even [31] and West-First [30] routing protocols. The same
disadvantage of SA emerges from this paper too. Simulated Annealing is tens of times
slower that Branch and Bound. It is also mentioned that SA required more than two hours

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

91

to reach a solution for a 7x7 2D mesh. For a 10x10 NoC, the time required by SA became
prohibitive: the algorithm did not finish in 40 hours.
 In order to speed up Simulated Annealing for mapping cores onto NoC tiles, a
Cluster-based Simulated Annealing (CSA) is proposed in [107]. CSA tries to exploit the
application’s communication locality so that it can identify clusters of IP cores. For each
core cluster, a NoC region is allocated. At high temperatures, the annealing process
occurs normally: any cores may be moved. However, when the temperature decreases
enough, the annealing process is limited to the cores from the same cluster. The idea
behind Cluster-based Simulated Annealing may be considered a practical implementation
of the clustering proposed by Kirkpatrick et al., adapted for the NoC application mapping
problem.
 The clustering phase determines the initial mapping for the annealing process.
First, the NoC nodes are grouped based on the number of output links and the overall
distance between them.

The communication core clustering is done in a similar way, by considering the
number of output communications and communication volumes for each core. However,
the number of core clusters is set to the number of determined NoC node clusters and
also, the number of cores from each cluster must match the number of nodes from the
NoC node cluster. Therefore, the clustering is driven first by the NoC topology and
secondly by the application.
 In the Core-to-Node mapping phase core clusters are assigned to node clusters:
core clusters are ordered by their communication demands and the clusters that
communicate the most are placed onto the NoC nodes that have the most output links.
The clustering is static. The purpose of this clustering technique is to reduce the number
of moves that lead to worse solutions, by restricting the cores moves inside their clusters.
At high temperatures, inter-cluster moves are allowed. At low temperatures, only intra-
cluster moves are permitted.
 After the clustering is done, the annealing process begins. The number of moves
made at each temperature level is not specified. Also, the stopping condition is vaguely
defined as a time threshold or a sufficient number of feasible solutions found. The initial
and final temperatures are not mentioned but, the number of temperature levels is set to
D, where D is the network’s diameter. Each time, a core is randomly selected for
swapping. For that core, it is identified the maximum network distance, d, between it and
the cores from its cluster. If we consider the annealing process is currently at step Dc (Dc
≤ D) then, if Dc ≤ d, only moves inside the cluster are allowed. Otherwise, the core is
allowed to be swapped with any core from the network. This means that inter-cluster
moves become less frequently, as the annealing temperature decreases.
 The authors report a 30% CSA speedup over SA by mapping the Video Object
Plane Decoder (VOPD) [61] on 2D meshes with sizes 3x3, 4x4 and 8x8. For the 3x3
mesh, a partial VOPD is used and for the 8x8 mesh, the VOPD application is used four
times. Hence, CSA was not extensively evaluated but, the results show that clustering is
able to reduce the search space significantly and CSA is still able to find the same best
solution found by SA. Clustering represents a problem-specific choice for Simulated
Annealing. It considerably improves SA’s speed because it uses more knowledge about
the NoC application mapping problem than the general Simulated Annealing.

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

92

 We have presented so far how Simulated Annealing was used until now to solve
the NoC application mapping problem. Hu and Marculescu showed that SA can find
good mappings but, only when the problem size is not very big (up to a 10x10 2D mesh).
They show that SA is too slow for NoC application mapping and propose a Branch and
Bound approach that is significantly faster because the search space is pruned. The
strength of BB resides on how effective is the pruning heuristic, since it tradeoffs speed
with quality of solution. However, a Branch and Bound technique can start consuming a
lot of memory. Lu et al. showed that Simulated Annealing can be made faster if the
Network-on-Chip is clustered and then the communicating IP cores are also clustered.
Core clustering is determined by NoC node clustering. This has the advantage that the
application is clustered with respect to the NoC topology characteristics. The
disadvantage is that NoC node clustering is deterministic and it does not account for the
application to be mapped at all. We believe a more flexible clustering, which may better
adapt to the application, may yield better results. Also, we observe that CSA’s clustering
is explicit, fixed before the annealing process starts.
 We propose next an Optimized Simulated Annealing algorithm for NoC
application mapping. Compared to CSA, our algorithm performs an implicit clustering,
during the annealing process and it is also significantly faster than CSA (and obviously
than SA). We do not cluster the NoC nodes because we do not want to restrict the core
clustering process. Only the application cores are clustered. We influence the IP core
moves during the annealing process, so that the communicating cores implicitly clump
together.

6.2 The Algorithm
OSA was created by continuing the work of Hu and Marculescu. Their Simulated
Annealing and Branch and Bound algorithms are available through the NoCmap project
[108]. We have ported their two algorithms, written in C++, into UniMap (written in
Java). OSA also uses some of the best practices for Simulated Annealing applied for
assigning tasks to processors [109]. We justify our approach by the fact that NoC
application mapping problem is closely related to the NoC scheduling problem [43].

We present next the Optimized Simulated Annealing pseudocode, which is
derived from the general Simulated Annealing from [109].

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

93

Fig. 80 Optimized Simulated Annealing

In the following sections, we show how OSA implements the most important parts of a
typical simulated annealing algorithm.

6.2.1 Mapping Cost
OSA is energy-aware. It evaluates the mappings using the analytical energy model
presented in Section 3.1.3.2.

6.2.2 Annealing Schedule
There are a lot of annealing schedules in literature: straight, geometric, reciprocal,
logarithmic, fractional, Koch etc. [103], [104], [105]. We have chosen for OSA the
geometric annealing schedule because this is the most used and recommended one [105]
and because the general SA implementations use it as well.
 The geometric annealing temperature schedule defines the temperature at iteration
i as:

)1,0(,0 ∈⋅=









qqTT L

i

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

94

T0 is the initial temperature and q is the geometric progression ratio. We set q = 0.9 for
OSA because this value is also used in [102], [108] and usually q is set between 0.9 and
0.98 [109]. L is the number of iterations per temperature level.
 OSA uses an initial temperature set to 1 by default but, this is considered a
parameter of the algorithm. The final temperature is fixed to 0.001. It is correlated with
the acceptance function (see Section 6.2.4). Hu and Marculescu’s SA starts from a
temperature of 100 and the final temperature is not bounded (their algorithm uses another
stop criteria).

6.2.3 Number of Iterations per Temperature Level
The general Simulated Annealing sets L = 100(NxN)2, where NxN represents the size of
2D mesh NoC. For example, for a typical 4x4 2D mesh, SA tries L = 25600 mappings at
each temperature level. These mappings are randomly generated, from the current
mapping, by interchanging two cores, or by placing a core into an empty NoC node. If we
consider that SA runs for 100 temperature levels13, this leads to 2560000 mappings
generated. An Intel XEON processor from our HPC system [70] evaluates a mapping in
~0.04 ms. Thus, for this example, SA would run for about 102 seconds. The algorithm’s
speed increases with the square of the NoC topology size. For the same example but with
a 10x10 mesh, SA would require more than one hour running time. However, the general
SA algorithm is not bounded by the number of temperature levels, and we have observed
that it easily runs for more than 150 levels of temperature for a 4x4 2D mesh. We argue
SA’s number of iterations per temperature levels is very high and it has a deep impact on
its speed. Also, we observe that this number is only NoC aware. It is by no means
application aware. For example, mapping 15 or 16 cores on a 4x4 2D mesh uses the same
L.

OSA uses the following relation to compute the number of iterations for each
temperature level:

*
2 2

(1) (1)() (2 1)
, , ,

2 2 2OSA n n c

n n n c n c c n c
L C C c n N n c−

− − − − − −= − = − = ∈ ≥ , where:

n is the number of NoC nodes and c is the number of cores to be mapped.
This number of iterations per temperature level represents how many distinct core

swappings are possible for a given NoC with n nodes and c cores placed onto these
nodes, so that at most two cores change positions compared to the initial mapping.

Therefore, the first core may be moved from its node onto other (n – 1) nodes.
The second core may be moved from its node onto other (n – 2) nodes (it is swapping
with the first core has already been counted). The third core can do (n - 3) swappings and
so on until the last core, which can be put onto (n - c) nodes.

The sum of all these single step possible swappings is

therefore OSA

cn

k

n

k

n

cnk

L
cncnnn

kkk =−−−−−=−= ∑∑∑
−−

=

−

=

−

−= 2

))(1(

2

)1(1

1

1

1

1

.

13 This is more than possible because the 100th element of a geometric progression with ratio 0.9 and initial

element 100 is 0.002959.0100 1100 ≅⋅ − .

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

95

It may easily be observed that max

.

2

)1(
}max{ OSA

not

OSA L
nn

L =−= . This happens when the

number of cores to be mapped is equal with the number of NoC nodes.
SA has L = 100(NxN)2. Because we noted the number of NoC nodes with n, we can write
that LSA = 100n2. It is obvious that SAOSAOSA LLL <<

max
. Also, in terms of algorithm speed,

we note that OSA speedup over SA is
2

(1)
1 lim lim 1 99.5%

200
OSA

n n
SA

L n n
S S

L n−>∞ −>∞

− = − => = − = 
 

.

We considered for LOSA the worst case, given by n = c. This speedup is in perfect
concordance with our further experimental results.
It can easily be observed that LOSA counts all mappings that are obtained by making a
single modification (core swapping) compared to the given mapping (otherwise, the total
possible mappings are of course OSAcn LP >). All the mappings that derive from a given
mapping in this way are what we call the mapping’s immediate neighborhood. We can
make an analogy with Markov chain. LOSA can be associated with the number of possible
single step transitions from a Markov chain, which describes the mapping state space
exploration performed by OSA. Later on, we will show how OSA assigns probabilities
for each single step transition, using the concept of Probability Distribution Function
(PDF).

Because n is NoC topology characteristic and c is application characteristic,
OSA’s number of iterations per temperature level is both NoC and application aware.

Returning to the example with the 4x4 2D mesh and a Simulated Annealing
algorithm that runs for 100 temperature levels, we compute LOSA for mapping 16 cores to
be 120. This means a run time of 0.48 seconds. Compared with how much time the
general SA needs (102 seconds), we get a speedup of ~ 99.53%. For the 10x10 2D mesh,
OSA’s L is 4950. This means a runtime of 19.8 seconds. The speedup in this case is of ~
99.5%. Obviously, if the number of cores to be mapped is less than the number of nodes
from the network, LOSA becomes smaller and the speedup higher.

Some criticism to this approach can be that although huge speedup can be
obtained with LOSA, OSA might find worse solutions because it does less exploration of
the search space. We argue that the general SA can easily repeat a lot of moves without
finding better solutions so that the search can be driven to qualitatively better solutions.
Additionally, OSA considers the initial temperature a parameter, which can be increased
so that the algorithm does more exploration. We will sustain our assessments through
simulations.

6.2.4 Acceptance Function
Both general SA and CSA algorithms use the Metropolis acceptance probability function:

KT

C

eCP
∆

−
=∆)(. Bolzmann’s constant (K) is set to the current mapping cost in the

implementation of Hu and Marculescu (and it is unspecified in CSA’s case). OSA
however uses the normalized inverse exponential acceptance function because it is shown
in [109] that it yields better results when it is used for task scheduling. This function is

defined as
TC

C

e

CP
01

1
)(∆−

+

=∆ . The practical difference between the two functions can be

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

96

seen when we consider ∆C = 0. The exponential form always accepts a new mapping that
is equally good compared to the current mapping, whereas the (normalized) inverse
exponential form accepts such a new mapping with a 50% probability.
 OSA’s acceptance function performs cost normalization by dividing the cost
variance (∆C) with the initial mapping cost (C0). This allows the temperature T to be
independent of the cost function:]1,0(∈T . Note that OSA sets the initial temperature to
1 and the final temperature to 0.001. However, OSA allows the initial temperature to be
higher than one. With respect to the normalized inverse exponential function, this would
mean the initial cost is artificially increased.
 Using the normalized inverse exponential acceptance function, the temperature T

can be written as:

0

1
ln 1

C
T

C
p

∆= −
 − 
 

. For the final temperature, 0

1
0.001 ln 1C C

p

 
∆ = − 

 
.

Therefore, the cost of a new mapping that is worse than the current mapping is accepted
with a certain probability until it varies with only 0.5%C0 from the cost of the current
mapping. Since OSA’s cost function represents energy consumption, we can conclude
that OSA considers the system frozen when the energy consumption varies with less than
0.5 percent.

6.2.5 PDF-based Swapping
The move function determines how Simulated Annealing explores the search space. In
[40], [52] the move is a random swap: a core is selected randomly and this core is then
swapped with another randomly selected core (an empty node can also be used). Note
that a random swap move has two steps:

1. select a core to be swapped;
2. select another core (or empty node) for the exchange.

The same random swap is used in [107] but, in this case the moves are restricted
at cluster level when the annealing temperature has decreased sufficiently. While the
simple random swap is by no means problem aware, the CSA random swap is indirectly
aware of the problem because it restricts a random move to the cluster of the core to be
moved.
 While both approaches select the core to be swapped randomly, OSA does not use
a uniformly random probability when determining the core to be moved. Instead, it
adapts the variable grain single move (based on probability densities and used for task
mapping [109]) into a variable grain swapping move, which uses two Probability Density
Functions (PDFs). OSA builds a Probability Density Function (PDF) for each core, based
on the amount of data it communicates. This leads to better chances for selecting a core
that communicates more data than a core which communicates less data. As the annealing
temperature decreases, the probabilities uniformly equalize. Therefore, at low
temperatures, all cores have a quite equal chance to get selected for swapping. Through
this approach, OSA uses domain-knowledge (dynamic characteristics) to explore the
search space. The following function is used:

0

1 1
[] icoreToCommT

P SelectedCore i
c T totalToComm c

 = = + − 
 

, where:

- c is the number of cores to be mapped;

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

97

- T and T0 are the current and initial temperatures;
- totalToComm is the total amount of data communicated by the all cores;
- coreToCommi is amount of data communicated by core i.

The second core used for swapping is selected by accounting for the communication
volumes between the core to be swapped and the rest of the cores. Another Probability
Density Function is built for each core. It is similar with the one above but, it does not
consider only the data communicated by the core but, also the data received by the core.
Also, this second PDF is not temperature dependent. Each core gets such a PDF
associated before the annealing starts. This PDF is defined

as
totalComm

comm
ccP ij

ji =↔][, where:

- commij is the communication volume between core i and j (this value is positive if
core i sends data to core j, or core j sends data to core i; otherwise, it is zero);

- totalComm is the communication volume of the entire application.
According to the PDF described above, the second core is selected for swapping. Then,
OSA searches, in a uniformly random way, for a direct neighbor of the second selected
core. This one will be swapped with the first selected core. This approach tries to make
communicating cores to attract each other, to cluster themselves, in a natural manner.
OSA’s move function performs an implicit clustering of the communicating cores, using
a stochastic approach.
 Compared to CSA, our algorithm clusters the cores dynamically, during the
annealing phase. OSA does not work with predetermined clusters, and it also does not
cluster the NoC nodes. Network-on-Chip node clustering is not needed because OSA
looks in the NoC node’s neighborhood.
 We call this kind of move a PDF-based swapping move. At every temperature
level, OSA performs exactly LOSA PDF-based swappings.

6.2.6 Stopping Condition
OSA uses the stopping function recommended in [109]: coupled temperature and
rejection threshold. The annealing process stops when the temperature goes below the
final temperature (0.001) and the last LOSA tried mappings did not lead to a solution better
than the best solution found so far. Therefore, OSA runs for a determined number of
annealing temperatures, which can be exceeded while better solutions are found. We note
OSA has a form of elitism because, during the entire running process, it stores the current
best solution. This is another difference from a general Simulated Annealing technique.
 Because OSA uses a geometric annealing schedule, we can write that 1

0
−= n

f qTT ,

where:
- T0 and Tf are the initial and final temperatures;
- q = 0.9 is the geometric progression ratio;
- n is the number of temperature levels.

The number of temperature levels can thus be expressed as 1log
0

+







=

T

T
n f

q .

If we consider that T0 = 1, Tf = 0.001 and q = 0.9, then OSA runs for approximately n =
65 temperature levels. Note that n is independent of the problem size. It can be increased
if better solutions are still found, after the final temperature level has been reached, or if

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

98

the initial temperature is raised. Obviously, the initial temperature must grow
exponentially so that n increases linearly.
 Because OSA’s stopping condition determines a number of annealing levels
independent of the problem size, the runtime of our algorithm is quasi-constant when the
algorithm is run more than once in exactly the same conditions. This property does not
apply to Hu and Marculescu’s Simulated Annealing.

6.2.7 Summary
OSA starts from an initial mapping (Mi) that is by default randomly generated (obviously,
the initial mapping can also be specified). Another input parameter can be the initial
temperature, T0, set to 1 by default. The mapping’s cost is obtained using the bit energy
model from [40]. We use a standard geometric annealing schedule, with LOSA annealing
iterations per temperature level. This number corresponds to how many mappings may be
obtained from the current mapping, by moving one core. The move function is a
swapping based on Probability Density Functions. We use the normalized inverse
exponential acceptance function because this is the one recommended by [109]. OSA
stops when the final temperature (Tf = 0.001) is reached and the number consecutive
rejected moves, R, reaches LOSA. This corresponds to the coupled temperature and
rejection threshold stopping condition proposed in [109]. While in [109] R counts how
many moves were rejected since the last accepted move, in OSA we use R to count how
many moves were rejected, per temperature level, since the last best mapping was found.
This means that while OSA requires no best mapping to be found during an entire
temperature level, the general Simulated Annealing from [109] needs to wait until the
number of unaccepted moves, counted from the last one accepted, reaches L. OSA’s
stopping condition is therefore more coupled to Tf than to R. This makes OSA’s number
of iterations to be independent of the NoC topology and its size. Since we consider that
the energy variations are small enough when the final temperature is reached, we believe
our way of computing R is more suitable for a Simulated Annealing applied to NoC
application mapping.

Currently, OSA works only with 2D mesh topologies but, it can be adapted to
work with other NoC topologies, too. Like Hu and Marculescu’s SA, OSA is also capable
to generate the routing functions, in a deadlock- and livelock-free manner, and to check if
the obtained mapping meets the bandwidth constraints.

Compared to the general SA, OSA determines how many iterations to make per
temperature level by considering the mappings’ neighborhood size. Using Probability
Density Functions, OSA performs an implicit and dynamic core clustering (CSA’s
clustering is explicit and static).

6.3 Simulation Methodology
This section presents the simulation methodology used to evaluate our Optimized
Simulated Annealing. OSA is compared to the NoC application mapping algorithms
mentioned above: Simulated Annealing and Branch and Bound [40]. We also compared
our results with the ones reported for Cluster Simulated Annealing [107].

Our methodology is mainly determined by: the benchmarks used for mapping, the
Network-on-Chip architecture and how and in what conditions we run our simulations.
 We evaluate OSA using all the benchmarks presented in Chapter 5.

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

99

 We have considered the most common Network-on-Chip architecture: a 2D mesh
with regular tiles, using wormhole switching and XY routing. The NoC topology size is a
simulation parameter. The NoC link bandwidth was set sufficiently high so that
bandwidth constraints are always met. The energy required to transfer a bit of data was
taken from NoCmap. The values were determined for 0.35 µm technology [52]: a NoC
router needs 0.284 picoJoule for processing one bit of data, the link needs 0.449
picoJoule to transmit it. A buffer read operation requires 1.056 picoJoule per bit and a
buffer write takes 2.831 picoJoule.
 Three NoC application mapping algorithms were used to map the core graphs
(benchmarks) onto 2D meshes: Simulated Annealing, Optimized Simulated Annealing
and Branch and Bound.
 For each benchmark, the size of the network was set as low as possible to include
the number of cores from the benchmark. The following table presents the NoC 2D mesh
size used for mapping each benchmark.

Benchmark # cores # NoC nodes NoC size
auto-indust 24 25 5x5
consumer 12 12 4x3

networking 13 16 4x4
office-automation 5 6 3x2

telecom 30 30 6x5
PIP 8 9 3x3

MPEG4 12 12 4x3
MWD 12 12 4x3

H.264 (CTG 0) 14 16 4x4
H.264 (CTG-1) 16 16 4x4
VOPD (CTG 0) 16 16 4x4
VOPD (CTG 1) 12 12 4x3
MMS (CTG 0) 16 16 4x4
MMS (CTG 1) 25 25 5x5

 In order to increase the simulations’ accuracy we have mapped each application
1000 times, with each algorithm. For each simulation, the initial mapping was randomly
chosen. To make the comparisons fair, we have set the seed of the random number
generator so that all algorithms start from the same point in the search space, every
simulation. Thus, simulation 1 works with seed 1, simulation 2 with seed 2, …,
simulation 1000 with seed 1000. We note OSA uses a linear congruential random number
generator [87], the same used by SA. A true random number generator could prove more
useful but, we consider this aspect beyond the scope of this work.
 For each mapping, we recorded the solution (i.e. the mapping), its cost (in
pJoule), the runtime of the algorithm (user CPU time) and the average heap memory
consumption. We did not use any application bandwidth constraints. Our experiments are
fully reproducible because the algorithms and the simulation methodology are part of
UniMap [69], an open-source project.

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

100

6.4 Experimental Results
In this section, we evaluate our Optimized Simulated Annealing by comparing it with
Simulated Annealing and Branch and Bound. The evaluation is three folded. We account
for execution runtime, memory consumption and solution quality. We show next only the
most representative results. More detailed results are available in [110], [111].

We begin with a runtime comparison between OSA and SA and respectively OSA
and BB. The speedups represent an average of the 1000 runtime speedups obtained for
each benchmark.

Fig. 81 OSA speedup over SA

The chart above clearly shows OSA is much faster than Hu and Marculescu’s Simulated
Annealing. We have obtained a 98.95% speedup on average. This is in perfect
concordance with our theoretical speedup expectations from section 6.2.3. The “lowest”
speedups are on office-automation and PIP, the benchmarks with the smallest number of
IP cores. We justify this significant speed gain mainly by the way OSA computes the
number of iterations per temperature level. This number takes into consideration the NoC
size, the number of cores to be mapped, and it is much lower than the number used by Hu
and Marculescu.
 The following chart shows how fast OSA is compared to Branch and Bound.

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

101

Fig. 82 OSA speedup over BB

It can be seen that OSA is slower than BB by ~ 24%, on average. However, for half of
the benchmarks, OSA is faster. Compared to Branch and Bound, our algorithm obtained
poor runtimes on MPEG4 (more than twice slower), H.264 (~ 1.5 times slower in both
cases) and slower but similar runtimes for PIP, office-automation, VOPD (CTG 1) and
auto-indust. We also observe OSA was faster on the biggest benchmarks: 25% speedup
for MMS (with 25 cores) and ~ 41% speedup for telecom (30 cores).

Next we show how OSA’s memory consumption is, compared to the memory
consumed by Simulated Annealing and Branch and Bound.

Fig. 83 OSA compared to SA in terms of heap memory consumption (a positive value means OSA

consumes less memory)

Simulated Annealing consumes less memory than OSA when mapping the benchmarks
with more than 16 cores. OSA manages to beat SA on several benchmarks with 16 cores
but, on average, Simulated Annealing consumes with ~13% less memory than our
Optimized Simulated Annealing.

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

102

 However, compared to Branch and Bound, OSA takes a little bit less memory on
average. This is shown in the next chart.

Fig. 84 OSA compared to BB in terms of heap memory consumption (a positive value means OSA

consumes less memory)

Actually, this chart points out the tendency of Branch and Bound to grow its memory
requirements as the problem size gets higher: OSA consumes with more than 33% less
heap memory than BB, on telecom.

Now we present the quality of the solutions found by the three algorithms. We are
interested in solutions with the smallest cost possible because the cost function we used
estimates the energy consumed by the Network-on-Chip.
 The following chart compares the mappings found by SA and OSA. For each
benchmark, we evaluate the 1000 mappings returned by the two algorithms and count
how many times one algorithm retuned mappings better (marked with “<” in the chart’s
legend) than the other one. Cases when both algorithms returned mappings with exactly
the same cost are marked distinctively.

consumer
networking

office-automation
telecom

PIP
MPEG4

MWD
H.264 ctg 0

H.264 ctg 1
VOPD ctg 1

VOPD ctg 0
MMS ctg 0

MMS ctg 1
AVERAGE

0%

10%

20%

30%
40%

50%

60%

70%

80%

90%

100%

0.
60

%

0
.0

0%

0
.0

0%

0.
10

%

0
.0

0% 35
.9

0
%

14
.3

0% 3
8.

40
%

4
7.

5
0%

5.
30

% 36
.6

0
%

60
.6

0
%

5
7.

00
%

21
.3

6%

0.
20

%

0.
0

0%

0.
0

0%

1
.3

0
%

0.
0

0%

2
8.

70
%

0.
7

0%

3
6.

00
%

47
.5

0
%

44
.8

0%

4
5.

7
0%

3
8.

60
%

42
.8

0
%

22
.2

7%

SA < OSA SA = OSA OSA < SA

Benchmark

Fig. 85 OSA mapping costs, compared to SA mapping costs

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

103

We notice that both algorithms find the same “best solution”, after all 1000 runs, for
benchmarks: networking, office-automation and PIP. For the last two of these three
benchmarks, we confirm the solution is optimal because we applied an exhaustive search.
Overall, OSA finds worse solutions than SA for 6 of the 14 benchmarks used in our
simulations: MPEG-4, MWD, H.264 (CTG 0), MMS (CTG 0), MMS (CTG 1) and
consumer.
We have also found out that SA and OSA always find the same best solution. However,
Branch and Bound fails to obtain a mapping that consumes at most like the best mapping
found by SA and OSA in two cases: for MMS (CTG 1), the energy lost with BB’s
mapping would be 0.1 % and for auto-indust, the energy loss is ~6%.
 We measured the difference between the worst and best mappings found for each
benchmark by SA and OSA. With our Optimized Simulated Annealing, the variation
between the worst and best mappings was not higher than 8%. However, with SA we
obtained the highest variation to be 70% for MMS (CTG 1). For the rest of the
benchmarks SA did not varied with more than 6%. Excluding MMS (CTG 1), the SA
average variation was 1.51% and the OSA average variation was 2.56%. If we also
consider MMS (CTG 1), SA had an average variation of 5.85% while OSA’s value was
less than half (2.53%). We conclude that the variations between the best and worst
mappings are comparable for SA and OSA.

Fig. 86 shows how many times the best solution, given by all three algorithms,
was found by each one of them.

Fig. 86 Best solution percentage

This chart shows that OSA finds the best solution more often than SA for several
benchmarks: auto-indust, telecom, MPEG4, H.264 (CTG 0), VOPD (CTG 1). BB
outmatches OSA for the MMS benchmarks, VOPD (CTG 0), H.264 (CTG 1), MWD and
consumer. Another observation is related to BB: it finds the best solution with probability
1 for all benchmarks, except auto-indust and MMS (CTG 1).

We also averaged the quality of the 1000 mappings per benchmark. Branch and
Bound is the algorithm that, on average, gives the mapping with the smallest energy
consumption. It fails just on auto-indust benchmark, where OSA provides the best

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

104

average mapping cost. Optimized Simulated Annealing achieves for MMS (CTG 1) a far
better average cost compared to Simulated Annealing: more than 34% energy gain is
obtained with OSA. For the rest of the benchmarks, the differences between OSA and SA
are less than one percent. Compared to BB, OSA provides solutions that are worse with
no more than 2.5% on each benchmark, except auto-indust, where OSA is better with
more than 6% than Branch and Bound.

Using 1000 simulations per benchmark, we have previously shown that the
percentage of better solutions was lower for OSA than for SA on six benchmarks:
MPEG-4, MWD, H.264 (CTG-0), MMS (both CTGs) and consumer. We present here our
attempt of increasing OSA’s quality of solution by increasing the initial temperature. We
applied this technique on the benchmarks mentioned above, with the purpose of getting
OSA’s percentage of better solutions over SA’s percentage. Increasing the initial
temperature allows OSA evaluate more mappings. Also, the higher the temperature, the
bigger is the probability to accept “bad” moves during the annealing process.
 Through this technique the quality of solution for our Optimized Simulated
Annealing got better, matching SA’s quality of solution i.e., OSA’s percentage of better
mappings overcame the corresponding SA percentage. Still, we had one exception: we
were unable to obtain the desired outcome for MMS (CTG 1). We disregard this
undesired result due to the fact that in this case, on average, SA consumes with more than
34% more energy than OSA.
 Note that we have increased OSA’s initial temperature exponentially because, due
to the OSA’s geometric annealing schedule, an exponential increase of temperature leads
to a linear increase of the number of temperature levels.
 The following table presents OSA’s speedup over SA, in terms of runtime, and
the initial temperature required by OSA to beat SA.

Benchmark Speedup (%) Initial temperature
MPEG4 97.51 1E+10
MWD 96.76 1E+10
H.264 (CTG 0) 99.18 1E+02
MMS (CTG 0) 97.41 1E+17
MMS (CTG 1) 61.40 1E+107
consumer 98.91 2E+00

If we ignore MMS (CTG 1), we see that the speedup remained high even with the
increase of initial temperature.

In order to illustrate how important OSA’s clustering technique is, we present
next a comparison between OSA with and without clustering. The single thing that
distinguishes OSA without clustering from OSA (with clustering) is that, in the first case,
the simple random core swapping is used, without any restrictions.
 The following chart shows how frequently the best solution is found.

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

105

Fig. 87 The influence of OSA’s clustering on best solution percentage

For all benchmarks, OSA with clustering finds the best solution more frequently than
OSA without clustering. More than this, we observe significant differences for the
benchmarks mapped onto the 4x4, 5x5 and 6x5 2D mesh NoCs. It is important to
mention that the two OSA variants find the same best solution for all benchmarks, except
MMS (CTG 1). In this case, the best solution found by OSA w/o clustering is with 0.02%
worse. On average, the best solution percentage for OSA with clustering is 18% higher
than for OSA without clustering. Therefore, our implicit and dynamic clustering
technique helps OSA to find the best mappings more often.
 The next chart shows how much energy is consumed on average by OSA without
clustering (compared with OSA using clustering).

Fig. 88 Average energy consumed by the mappings obtained with OSA without clustering

It may be noticed that for each benchmark OSA without clustering found mappings that
consume additional energy. The clustering technique leads to lower energy consumption
with more than 1% in some cases. OSA with clustering always gives better average
results than OSA without clustering.

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

106

Finally, we present the simulation results on bigger 2D meshes. We used four
instances14 of the VOPD benchmark with 16 cores and obtained a benchmark with 64
cores. Using SA, OSA and BB, we mapped it on an 8x8 2D mesh. SA was run ten times
and OSA and BB run 100 times.

We obtained an average running time of ~ 12.65 hours (per simulation) for SA.
OSA ran for approximately 155 seconds, while BB required just ~ 114 seconds.
Averaging the results from the 100 runs, OSA was ~36% slower than BB. Still, OSA
runtime is significantly lower than CSA’s runtime: 4750 seconds [107].

OSA consumes with approximately 39% less memory than Branch and Bound.
During the 100 simulations, OSA’s peek memory consumption was 37.3 MB, while BB
required a maximum memory of 85 MB.

The best mapping was found by Simulated Annealing. However, OSA’s best
mapping is only ~ 0.7% worse. Branch and Bound finds a best mapping that consumes
around 64% more than the best mapping found by SA. Averaging the 100 mappings done
by OSA and comparing them with the ones obtained with BB, we have observed that
Branch and Bound obtains on average a mapping cost ~70% worse.
 We have aggregated all the E3S benchmarks used in our previous simulations and
obtained 84 cores that we mapped onto a 10x9 2D mesh. Again, SA run 10 times, while
OSA and BB run 100 times.

SA required a very big time to run one simulation: approximately 70 hours. OSA
ran for approximately 526 seconds, while Branch and Bound needed only 380 seconds.
Averaging the results from the 100 runs, Optimized Simulated Annealing was ~48%
slower than BB.

OSA consumed approximately the same of memory Branch and Bound required.
During the 100 simulations, OSA’s peek memory consumption was 62 MB, while BB
required a maximum memory of 71 MB. We believe Branch and Bound manages to keep
the memory consumption not growing exponentially by pruning most of the search space
(we observed BB, in several simulations, to prune 85% to 93% of the explored search
space).

Averaging the 100 mappings done by OSA and comparing them with the ones
obtained with BB, we have observed that Branch and Bound obtains on average a
mapping cost ~76% worse. Simulated Annealing found the best solution but, it is better
than OSA’s best solution by only 0.09%.
 Using the H.264 (CTG 1), MMS (CTG 0), MMS (CTG 1), MPEG4, MWD and
VOPD (CTG 0) benchmarks, we have obtained 97 cores that we mapped onto a 10x10
NoC. Because of the huge running time SA needed for mapping the previous application,
we simulated these application with 97 cores only with OSA and BB (both were run ten
times).
 Optimized Simulated Annealing run on average approximately 15.9 minutes per
simulation. Branch and Bound needed only two thirds of this time: ~15.44 minutes for
each mapping simulation (OSA is only 3% slower than BB).
 Branch and Bound consumed around 40 MB of memory and Optimized
Simulated Annealing required approximately 45 MB.

14 Like in [107], because applications with a high number of cores are lacking and because we preferred
using real applications instead of randomly generating core graphs (like in [40], [52])

Optimized Simulated Annealing for Network-on-Chip Application Mapping. A Domain-
Knowledge Approach

107

 Once more, OSA found every time mappings better than the ones found by
Branch and Bound. Averaging the 100 mappings done by OSA and comparing them with
the ones obtained with BB, we have observed that Branch and Bound obtains on average
a mapping cost ~76% worse.
 By combining all non E3S benchmarks (PIP, H.264, MPEG4, VOPD, MWD,
MMS), we get a benchmark with 131 cores, which we mapped onto a 12x11 Network-on-
Chip. OSA and BB mapped this benchmark ten times.
 OSA required, on average, approximately 51 minutes mapping this application.
Branch and Bound was ~15% faster: it needed only around 44 minutes, on average.
 In this case, OSA consumed less memory, 36 MB, while BB memory
requirements were 14% higher.
 Optimized Simulated Annealing found each time a mapping that consumes
significantly less memory. On average, OSA’s solutions need 79.4% less memory than
BB’s solutions.
 Finally, we combined all of our benchmarks an obtained an application with 215
cores. We used OSA and BB to map it (ten times) onto a 15x15 NoC.
 Optimized Simulated Annealing run for 8.4 hours, on average. OSA consumed on
average 265 MB of memory, for each mapping.
 Branch and Bound run on average 3.77 hours for each mapping. This is more than
half OSA’s runtime. Memory consumption was also significantly lower: only 158 MB.
However, we obtained no solution from BB, after all ten mapping. All mapping attempts
will Branch and Bound failed. No suitable solution was found because, each time, the
algorithm pruned more than 98.7% of the search space. This severe pruning did not allow
BB to finish mapping the application. This leaves us to believe that Branch and Bound’s
memory consumption does not grow exponentially but, the quality of solution is heavily
affected, up to the point where the algorithm does not give any solution.

6.5 Summary
We have presented in this chapter an Optimized Simulated Annealing (OSA) for
Network-on-Chip application mapping. Like Hu and Marculescu’s Simulated Annealing,
OSA is energy and performance aware. OSA uses more application knowledge that helps
it at better exploring the search space. Like Clustered-based Simulated Annealing, OSA
also performs clustering but, implicitly and dynamically, not explicitly and statically.

OSA proved to be much faster than SA. We have obtained an average of 98.95%
runtime speedup while the quality of the mapping solution is not lost: OSA managed to
find the same best solution found by SA. On the 64 cores benchmark, we found OSA is
99.97% faster than CSA.

We showed OSA is feasible for NoC meshes with size higher than 10x10. OSA is
also comparable to Branch and Bound in terms of memory consumption and speed. OSA
was able to map 97 cores on a 10x10 2D mesh in a time slower by only 3% than the time
required by BB. However, Branch and Bound fails to find better solutions on auto-indust
and MMS (CTG 1) benchmarks. More than this, the mapping solution given by BB is
70% worse than the one found by OSA, when mapping cores onto an 8x8 2D mesh, 76%
worse on 10x9 and 10x10 2D meshes, and 79% worse on a 12x11 2D mesh. We also
found that Branch and Bound is unable to map an application with 215 cores, onto a
15x15 NoC, because more than 98% of the search space is pruned.

“You have your way. I have my way.
As for the right way, the correct way, and the only way, it does not exist.”

Friedrich Nietzsche

108

7 Designing Domain-Knowledge Evolutionary
Algorithms for Network-on-Chip Application Mapping

Evolutionary Computing (EC) [112] is a part of Artificial Intelligence (AI) inspired from
the evolution process encountered in Biology. The heuristic algorithms from this field of
research address NP-hard optimization problems by means of natural selection and
evolution mechanisms. The search space is filled with candidate solutions, called
individuals.
 A typical Evolutionary Algorithm (EA) starts with a population of individuals
(usually randomly generated). An objective (fitness) function is used to evaluate each
individual. Then, based on the individuals’ fitness, a selection mechanism decides which
individuals participate in the next phase: reproduction. Crossover and mutation are the
typical reproduction operators that take parent individuals and produce offspring
individuals. Through recombination, a new population is formed. It contains individuals
from the previous population and offspring. The population size is typically constant.
Thus, while some individuals from the previous population are kept, others are discarded
and replaced with offspring. Each population is called a generation (of individuals). The
algorithm keeps on generating populations of candidate solutions until it is considered
that, from the last generation, there are no more significant improvements in the
individuals’ fitness. Evolutionary Algorithms are used in many research fields to address
single-objective and multi-objective optimization problems, based on the concept of
Pareto efficiency [113].
 In this chapter15, we use UniMap (see Chapter 4) to evaluate and optimize two
evolutionary algorithms: an Elitist Genetic Algorithm (EGA) and an Elitist Evolutionary
Strategy (EES). After approaching our problem with an Optimized Simulated Annealing
technique, we decided to switch to evolutionary algorithms due to their intrinsic
parallelism. Evolutionary techniques perform searches starting (in parallel) from multiple
points in the search space. Our evaluated algorithms optimize the Network-on-Chip
communication energy. We consider multiple crossover and mutation operators, specific
for permutation problems, like NoC application mapping is. Using problem specific
knowledge, we propose such context-aware operators. We show such operators improve
the evolutionary algorithms’ performance. We try to find out which crossover and
mutation leads to the best solutions. We also research whether crossover or mutation
helps more the evolutionary algorithms. These algorithms are compared with our
Optimized Simulated Annealing (OSA) technique (see Chapter 6). Finally we approach
our problem in a multi-objective way: besides minimizing NoC communication energy,
we also try to obtain a mapping that is thermally balanced.

15 The work presented in this chapter was submitted (on July 21st

, 2011) to the Journal of Systems
Architecture (JSA - http://ees.elsevier.com/jsa). Since July 25th, 2011, it is under review with manuscript
number JSA-D-11-00103 [114].

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

109

7.1 Related Work
In our opinion, one of the most representative works, using evolutionary algorithms for
Network-on-Chip application mapping, is the one developed by Ascia et al. [64], [115],
[72]. The authors use a genetic algorithm to determine the mapping with the best
application execution time and power consumption. The mappings are evaluated using a
NoC simulator.

In [64], the SPEA2 [65] multi-objective genetic algorithm is used, with single-
point-crossover and swap mutation. Both genetic operators remap hot spot cores (i.e. the
cores with the highest communication volume) randomly. We question here the use of
single-point-crossover because this kind of operator may lead to duplicated genes in the
offspring, which are not allowed for permutation problems.

The crossover and mutation operators are redefined in [115]. The mutation
operator chooses a core at random and places it onto one of the neighboring nodes of the
core with which it communicates the most. The crossover operator is not aware of the
NoC application mapping problem. It acts as multiple swap mutations. No useful
information about the two crossed over mappings is exchanged.

The same mutation operator is kept in [72], while the crossover operator was
changed: from the two parents, the one with the better mapping is chosen. Then, its hot
spot core is swapped with a randomly chosen core. This crossover operator also does not
exchange any information between the two parent mappings. It actually acts as a swap
mutation, too.

Ascia et al. conclude that the definition of suitable genetic operators has a strong
impact on the performance of the genetic algorithm. They admit future research is
required in this area. We also observe that, essentially, Ascia et al. define a crossover
operator that behaves like a mutation operator.

We evaluate several crossover operators for permutation problems: Position
Based (PB) and Partially Mapped (PMX). We improve PB by proposing NoC Position
Based crossover (NPB), a context-aware genetic operator. We also introduce a novel
crossover called Mapping Similarity (MS). It identifies the similarities between the two
parent mappings and propagates them to their children. In contrast with the crossover
operators of Ascia et al., MS exchanges information between the parents.

As mutation operator, we integrate our developed Optimized Simulated
Annealing (OSA). We show that, as compared with swap mutation, this hybrid
(evolutionary – simulated annealing) approach provides better results.

Besides a genetic algorithm, we also work with an evolutionary strategy. EES is
available in jMetal (a multi-objective metaheuristics library, which is integrated in
UniMap – see Chapter 4). We also use the OSA algorithm as a baseline. This allows us to
compare simulated annealing with evolutionary algorithms.

We evaluate our two algorithms with every crossover and mutation operators, in
terms of solution quality and convergence speed. The goal is to identify the best
crossover and mutation operators. We also want to find out how each genetic operator
influences our algorithms.

Finally, we show how our genetic operators behave doing a multi-objective
optimization, with NSGA-II [116] and SPEA2 algorithms. Besides minimizing NoC
communication energy, we also aim to place the IP cores so that the NoC is thermally
balanced. For the thermal balance goal we use the analytical model presented in [117].

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

110

Thermal balance means minimizing the hotspot temperatures. This is achieved by leaving
a bigger distance between the IP cores that consume more power. Even if these IP cores
do not communicate a lot (or even not at all), placing a bigger distance between them
changes the entire mapping. A thermally balanced NoC could have the communicating IP
cores not placed as close as possible. Therefore, our two objectives are contradictory.
This makes the multi-objective optimization process more difficult than the one of Ascia
et al., where the two objectives (application runtime and power) are not contradictory
(both application execution time and NoC power consumption will decrease if the
communicating cores are closer to one another).

7.2 Energy- and Performance-Aware Genetic Algorithm
We developed in UniMap an Energy- and performance-aware Genetic Algorithm (EGA).
EGA is based on the Generational Genetic Algorithm (GGA) [118]. As compared to
GGA, EGA implements an elitist mechanism.
 EGA is developed for MxN 2D mesh NoCs but, it may be extended to work with
other topologies as well. The algorithm uses a bit-energy analytical model for computing
the NoC communication energy. It considers that Dimension Order Routing is employed
but, it can also generate a deadlock- and livelock-free routing function using the turn [30]
and odd even [31] models. Additionally, network bandwidth constraints may be
considered.

Before describing how our algorithm works, we present how we represent our
NoC application mapping problem genetically, in terms of genes and chromosomes.
 Each IP core is uniquely identified through a positive integer number, which
forms a gene. Thus, the chromosome is a one-dimensional array containing non-repetitive
positive numbers (coding the IP cores) and “-1” for empty NoC tiles. Each chromosome
(individual) represents a mapping of cores onto NoC tiles. For a MxN 2D NoC mesh (M

columns, N rows), the ith gene (NMi ⋅= ,1) from the chromosome encodes the IP core

placed in the  Mi / -th row and




=
≠

0%,

0%,%

MiM

MiMi
-th column (% is the modulo

operator). Thus, a chromosome may contain multiple “-1” values. Its length is of MxN
genes. Internally, before applying genetic operators, we replace this “-1” values with
unique identifiers so that the chromosome contains a set of non-repetitive numbers. This
allows us to work with genetic operators for permutation problems. After the genetic
operator is applied, the “-1” identifiers are put back.
 EGA starts with a population of randomly generated individuals. The population
size is an algorithm parameter. It is set by default to 100.

EGA’s fitness function is given by the bit-energy analytical model (see section
 3.1.3.2). Our algorithm uses the Binary Tournament Selection [112] technique, available
in jMetal. It works by selecting an individual for reproduction as the individual with the
best fitness from a set of two randomly selected individuals.
 Reproduction consists of applying the crossover and mutation genetic operators.
Our algorithm works by default with Position Based (PB) crossover and swap mutation.
The crossover and mutation probabilities are algorithm parameters. By default, we work
with 90% crossover probability and 1/n mutation probability, where n is the number of
NoC nodes.

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

111

We have implemented and integrated into jMetal the PB crossover. Swap
mutation is available in jMetal. As we will show later on, we implemented other two
crossover operators and another mutation operator. We also make use of the Partially
Mapped Crossover (PMX), available in jMetal.

EGA stops after a specified number of generations. It may also be stopped after a
given number of evaluated mappings.

7.3 Elitist Evolutionary Strategy
Elitist Evolutionary Strategy (EES) [112] is available in jMetal. We adapted this
algorithm to our problem by using the same energy-aware fitness function like in the
EGA case.

EES works very similar to a genetic algorithm, with the difference that the
reproduction phase uses only mutation. The algorithm works with a population of size µ.
At each generation, it generates λ offspring, λ ≥ µ. For every new generation, µ best
individuals are selected from the previous population and from the λ offspring
individuals. In our simulations, we set λ=2µ. We present next the pseudocode for this
algorithm.

1. Randomly generate a µ size population
2. Evaluate all individuals
3. WHILE not stopping criteria meet
4. WHILE not λ offspring generated
5. Select a parent by any selection method
6. Create a new offspring by using mutation operator
7. Evaluate the offspring
8. END WHILE
9. Create new population (from previous population and λ offspring)
10. END WHILE

Fig. 89 Elitist Evolutionary Strategy

7.4 Developing Problem Knowledge Crossovers
This section presents the crossover operators used in this research. We work with
crossover operators for permutation problems. There are many such operators in literature
(order, inversion, cycle etc.) [64]. We used Position Based Crossover and Partially
Mapped Crossover. Position Based Crossover (PB) [119] aims keeping absolute position
information during the recombination process. Partially Mapped Crossover (PMX) [120]
tries to preserve genes’ order, adjacency and position as much as possible. PMX is one of
the most used crossover operators for permutation problems [112].

Next, we present two new crossover operators that we propose for the Network-
on-Chip application mapping problem.

7.4.1 NoC Position Based Crossover (NPB)
NoC Position Based Crossover (NPB) extends PB so that the cores that are kept fixed are
not selected randomly. We rather keep fixed the hot spot cores, i.e. the cores which
communicate the most data. We sustain our approach by arguing that moving hot spot
cores is more likely to produce worse mappings than moving less communicating cores.

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

112

NPB basically favors less communicating cores to rearrange themselves around the hot
spot cores.

NPB starts by finding the first 50% cores which communicate the most data. After
we have the list of hot spot cores, we evaluate the two parents, P1 and P2, using the
following relation: ∑

≠
∈

⋅=
ji

Cji
jiji cccc

,

),(distance),(volcost , where C is the set of hot spot

cores. This relation takes into consideration the data volumes and the Manhattan distance
between the hot spot cores (we assume a 2D mesh topology but, the relation may easily
be adapted for other topologies as well). We use this distance metric because we assume
a network with XY routing. The parent that better mapped the hot spot cores is the
selected parent. Next, an offspring is created by placing the hot spot cores in the positions
they are in the selected parent. The rest of the offspring’s genes are filled from the other
parent, like PB does.
 Our approach, based on hot spots, is similar to the approach from [72]. The
difference is that, we do not simply swap the hot spot core with a randomly chosen core;
we rather fix the first half of the most communicating cores. While the crossover from
[72] behaves as a swap mutation, NPB acts as a Position Based crossover, with context-
awareness.

7.4.2 Mapping Similarity Crossover (MS)
Our developed Mapping Similarity crossover (MS) has the purpose of identifying the
topological similarities between two (parent) mappings and replicating them in the
offspring. MS has two phases. The first phase tries to identify the mapping similarities
between the two mappings. By doing so, the common characteristics of the two mappings
are identified. The cores mapped in a similar way in both parents are mapped the same in
the two children: child 1 maps the similar cores like parent 1 and child 2, like parent 2.
We should point out that the offspring keep the common characteristics of their parents,
either good or bad. The goal of the first MS phase is to decide which genes the offspring
inherit from their parents. MS attempts to improve the offspring through a secondary
phase, which performs a greedy mapping for the rest of the genes. This phase tries to
raise the children fitness by rearranging the cores which are not mapped similarly, hoping
they will be placed better with respect to the similar cores. We present next, in detail,
how MS works.

MS starts from two parent individuals P1 and P2. For each parent, it computes the
distance array D. Its elements are given by[] ()ki,d=iD

ki
Cki,
∑
≠

∈
. C is the set of IP cores. The

term d(i, k) gives the Manhattan distance between communicating cores i and k (D[i] = 0
when core i does not communicate with any core). Note the computation of D is topology
dependent. We assume a 2D mesh NoC but, our approach may be applied to other
topologies as well. Let D1 be the distance array for P1 and D2 the distance array for P2.
Then, we define a similarity function S that returns a binary array so that its elements are
defined as:

[] [] []
[] [] Ci,

iDiD

iD=iD
=iS

21

21 ∈




≠,0

,1

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

113

We observe [] []iD=iD 21 even when the cores communicating with core i are at different
distances from i, in P1 and P2. This happens when the sum of distances is the same. This
similarity function applies a transformation on the mappings’ representation. From the
topological graph, the similarity function allows us to only see the communicating cores
between which the distances are the same. For example, consider three cores: C1, C2 and
C3. Let C1 communicate with C2 and C2 with C3. In both P1 and P2, the distance between
C1 and C2 is 1 and between C2 and C3 is 2.

P1

 C1 C2

 C3

P2 C3 C1 C2

Fig. 90 Example of similar mappings, for 3 cores on a 3x3 2D mesh NoC

Our function S returns the array [1, 1, 1, 0, 0, 0, 0, 0, 0] (we assumed there is no
similarity between the rest of the cores, not shown in the above figure). It shows the
placement of these first three cores is similar in both parents, even if the cores are placed,
in P1, in the lower left corner of a 2D mesh and in P2, in the upper part. The similarity
function tries to identify which cores are mapped the same way in both parent
individuals, being aware of the symmetries that exist in a NoC topology like the 2D
mesh. The example above illustrates the motivation behind MS phase one: the
symmetries from 2D mesh topological graph can easily lead to many different core
placements which are actually having the same energy cost. A criticism to this approach
might be that MS can easily propagate “bad” similarities. By “bad” similarity we
understand cores that are at big distance from one another but, since they are at exactly
the same distance in both mappings, they are considered similar. We argue that we should
not make a distinction between “good” and “bad” similarities in our case. Firstly, we do
not know for sure when a similarity is “bad”. For example, even if two communicating
cores are placed at five hops from each other, that might be the optimum distance
between them. Secondly, we should propagate all common characteristics from parents to
their children. By doing so, MS has higher chances to keep the crossover disruption rate
low (obviously, the bigger the sequence of genes that is transferred from the parent to the
child, the lower is the probability of a child to produce perturbations). Our crossover
operator has a parameter that restricts the similarity function to work with cores that are
at most H hops away. H ranges from one to infinity. When H is infinite, S is unrestricted.
According to the schemata theorem, to maximize the chances of preserving the
hyperplane samples, the crossover’s disruptive effects should be minimized [121].
However, it is not enough to consider how often (when) an individual is disrupted but
also how it will be disrupted [122]. The second MS phase addresses this issue.

The rest of the cores will then be remapped in a greedy manner. It is greedy
because we want the crossover operator to be fast. We order the cores left for mapping
based on how many similar cores they communicate with. Then, we position each core in

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

114

an empty place, so that the Manhattan distance between it and the already placed cores is
minimized. Therefore, MS second phase is actually a fast and simple partial mapping
algorithm. Obviously, this greedy approach may easily be replaced with other mapping
techniques, by simply restricting the similar cores to their given positions. This MS phase
attempts to disrupt the hyperplane samples so that the genetic algorithm exploration
process improves. The disruption rate is controlled by the first MS phase.

We argue our MS crossover operator does not simply act as a swap mutation
operator like in the research of Ascia et al. [64], [115], [72]. MS instead tries to identify
mapping similarities, which are inherited from both parents. This emphasizes the
crossover character.

7.5 Mutation Operators
This section presents the two mutation operators used in this research. We chose to work
with swap mutation, which is a very common genetic operator in permutation problems.
It simply interchanges two randomly selected genes.
 Using our developed Optimized Simulated Annealing algorithm as a mutation
operator we obtain a hybrid algorithm: an Evolutionary Algorithm which incorporates a
Simulated Annealing technique. OSA performs a context-aware mapping and outputs two
cores which must be swapped. It performs an iteration each time it gets called by the
Evolutionary Algorithm. When the number of iterations reaches OSA’s number of
iterations per temperature level, the annealing temperature is decreased.
 By using OSA as a mutation operator, we propose using hybrid algorithms for
NoC application mapping. More precisely, we have a meta-heuristic, with an
Evolutionary Algorithm as the main algorithm. The EA encapsulates a NoC specific
algorithm, as a mutation operator (OSA). This approach allows us to benefit from the
intrinsic parallelism that EAs contain. Also, the exploration has context-awareness,
through the proposed mutation. The mutation may be performed by any algorithm for
NoC application mapping. Any EA using a mutation operator may be used.

7.6 Multi-objective Optimization
NoC communication energy is minimized by placing the communicating IP cores as
close as possible, onto the NoC tiles. Since we are interested to evaluate the performance
of the genetic operators used in this research, we do a multi-objective optimization, too.
Our second objective is to do a thermal-aware placement of the IP cores. Uniformly
distributing the IP cores’ temperature across the network leads to the minimization of the
hotspot temperature. Two IP cores that consume significant power should be placed at a
greater distance from one another. However, this means our thermal balance objective is
in contradiction with our energy objective.
 For thermal balanced NoC design, we adopt the approach from [117]. The NoC
architecture is modeled as a matrix. Each matrix element is a NoC node with an IP core.
In order to measure the IP cores temperatures, we use the HotSpot tool [123]. UniMap
can automatically generate a floorplan corresponding to a NoC application mapping. The
floorplan is a matrix of regular NoC tiles. We consider each tile has a core and a router.
The tiles size is the sum between router area and the area of the largest IP core from the
E3S [56] library. This library also gives us the IP core power consumption (based on how
much power a core requires to process the assigned application tasks). We used ORION

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

115

[96] to obtain the size of a typical NoC router. This is everything required by HotSpot to
provide the IP cores steady state temperatures (measured in Kelvin). The NoC matrix is
divided into t x t sub-matrices, where t is the heat transfer ability. The larger t is, the more
neighboring IP cores will be affected by the source IP core. For each sub-matrix, we sum
the temperatures associated with the cores from it. Considering all these sub-matrices, the
goal is to minimize the maximum sum (thus, the fitness function will

be
}max{

1

sumsssubmatrice
). For t = 1, the problem is trivial: any mapping is optimal.

Taking into consideration the conclusions from [124], we work with t = 2.
 Each time the multi-objective genetic algorithm (NSGA-II or SPEA2) needs to
evaluate a NoC mapping, the bit energy model is used to compute energy and HotSpot is
called during the thermal balance evaluation.

7.7 Simulation Methodology
 This section presents the simulation methodology used for evaluating and
optimizing Evolutionary Algorithms for Network-on-Chip application mapping. We work
with: our developed Energy- and performance-aware Genetic Algorithm (EGA), Elitist
Evolutionary Strategy (EES) and we use OSA as a baseline. For both EES and EGA, we
used two mutation operators: swap mutation and OSA mutation. For EGA, we have also
worked with different crossover operators: Position Based (PB), Partially Mapped (PMX)
and respectively our developed NoC Position Based (NPB) and Mapping Similarity
(MS). Our multi-objective evaluations work with the jMetal NSGA-II and SPEA2 genetic
algorithms, with the above genetic operators.
 We use in this research all the benchmarks presented in Chapter 5. We have
considered the most common Network-on-Chip architecture: a 2D mesh with regular
tiles, using wormhole switching and XY routing. The NoC topology size is a simulation
parameter. All benchmarks are mapped on 2D meshes with sizes exactly like in Section
 6.3. Like in Chapter 6, we combined some benchmarks to be able to work with big NoC
meshes. VOPD 4x has four times the VOPD (CTG 0) benchmark. all-mocsyn contains all
the E3S benchmarks. The 97-cores benchmark is made of: H.264 (CTG 1), MMS (CTG
0), MMS (CTG 1), MPEG-4, MWD and VOPD (CTG 0). The 131-cores benchmark
combines all non E3S benchmarks. Finally, by combining all benchmarks we get 215-
cores.
 In order to increase the simulations’ accuracy we have mapped each application
1000 times, with each algorithm. For each simulation, the initial mapping was randomly
chosen. To make the comparisons fair, we have set the seed of the random number
generator so that all algorithms start from the same point in the search space, every

simulation. Thus, simulation i works with seed i, 1000,1=i . Benchmarks VOPD 4x and
all-mocsyn run only 100 times, and 97-cores, 131-cores and 215-cores only 10 times.
This is because processing these benchmarks takes considerably more time [106].

We are interested to see how mutation probability influences the algorithms.
Since we work with context-aware mutation, it is not clear to us if mutation probability
should be low or high. Also, we want to find out how the proposed crossover operators
perform. We argue it is also interesting to find out at what mutation probability level each
crossover works best. Therefore, we varied the mutation probability, from 10% to 100%

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

116

in steps of 10%. We divided the simulations evenly: 10% simulations per mutation
probability. In fact, it is unclear if crossover has higher importance than mutation to an
Evolutionary Algorithm [125]. However, because we are here more interested about
crossover than mutation and due to the high number of simulations, we decided to work
with a constant crossover probability of 90%. We also fixed EA’s population size to 100
individuals. Since we use OSA as a baseline algorithm, we limited EGA and EES to
perform the same number of evaluations like OSA does.

7.8 Experimental Results
We present next only the most representative results obtained with our research on
domain-knowledge evolutionary algorithms for Network-on-Chip application mapping.
Our entire set of results is available in [126].

We start by measuring the mapping cost found for each benchmark. Since (in
order to improve the accuracy of our results) we map the same application multiple times,
we obtain an average mapping cost (energy). We get such average cost for every
evolutionary algorithm, with every crossover operator and for each mutation probability.
For EGA with MS crossover and OSA mutation, we also limit the similarity function to
the IP cores that are one – EGA-MS-OSA (1) – or two hops away – EGA-MS-OSA (2).
 We work with the metric that we call Normalized Absolute Deviation (NAD)
from the minimum (in this case the minimum average energy). This metric is based on
the statistic absolute deviation (AD) metric. Because we deal with a minimization
problem, we consider the absolute deviation from the minimum average cost from the
entire data set (Xb). Then, we normalize AD by dividing it to }max{ bX (the maximum

average cost from the entire data set). Therefore, the normalized absolute deviation (of

data point bb Xx
m

∈) from the minimum is
}max{

}min{

b

bb
b X

Xx
NAD m

m

−
= . The index bm marks a

benchmark evaluated with an algorithm with at a certain mutation probability. For each
benchmark, we obtain its NAD, at every mutation rate, using the above formula. The data
set Xb contains the average mapping energies obtained by all evolutionary algorithms, for
the specified benchmark. At each mutation level, we average the NADs of all our

benchmarks. Therefore, we have
B

NADNADNAD
NADAverage mmm B

m

+++
=

...21 , with B

being the number of benchmarks and m the mutation probability
(%}100%,...,20%,10{∈m). We use this metric because directly comparing the average
energies obtained for different applications is infeasible since each application has its
own energy domain (which usually differs significantly).
 Figure 91 presents how much the average mapping cost deviates from the
minimum average cost, found by all algorithms. We show the results obtained only for
the big benchmarks (VOPD 4x, all-mocsyn, 97-cores, 131-cores and 215-cores) because
our evolutionary algorithms perform similarly on the rest of the benchmarks (in terms of
average mapping cost). For every algorithm, only the point corresponding to the mutation
probability where it performed best is shown.

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

117

1.25% 1.50% 1.75% 2.00% 2.25% 2.50% 2.75% 3.00% 3.25% 3.50% 3.75% 4.00% 4.25% 4.50%
10

20

30

40

50

60

70

80

90

100

EGA-SWAP EGA-OSA EGA-MS-SWAP EGA-MS-OSA EGA-MS-OSA (1)
EGA-MS-OSA (2) EGA-NPB-SWAP EGA-NPB-OSA EGA-PMX-SWAP EGA-PMX-OSA
EES-SWAP EES-OSA OSA

Average NAD [%]

M
ut

at
io

n
p

ro
b

ab
ili

ty
 [%

]

Fig. 91 Algorithms’ comparison based on their average normalized absolute deviation, from their

common minimum average cost (only big benchmarks)

It may be easily observed that all algorithms perform significantly better with OSA
mutation than with swap mutation. EES-OSA has the smallest deviation, among all
algorithms, followed by EGA-PMX-OSA. EGA-MS-OSA is the next best performing
algorithm in this case. We even notice a slightly better performance for EGA-MS-OSA
(1) (1.64% deviation) than for EGA-MS-OSA (1.77% deviation). However, EGA-MS-
OSA (2) performs much worse (3.21% deviation, at 100% mutation probability). After
EGA-MS-OSA we have EGA-OSA and EGA-NPB-OSA. EGA-OSA is the algorithm
that gives the smallest deviation at the lowest mutation rate: 30%. EGA-NPB-OSA is
better than EGA-MS-SWAP. Still, EGA-MS-SWAP clearly beats OSA, making MS the
only crossover than outmatched OSA with both mutation operators. Mapping Similarity
is the only crossover operator that performed well regardless of the mutation operator. PB
crossover also does not provide bad results but, MS is clearly better (EGA-SWAP has a
3.52% deviation, with only 0.02% smaller than OSA’s deviation). The performance of
our other crossover operator, NPB, is not good when we compare it with PB. In both
cases (OSA or swap mutations), NPB performs worse than PB. However, we observed
(on all benchmarks) that NPB performed better and better as mutation grew. It performed
best at 100% mutation probability (similarly to PMX). PB performed best at 80%
mutation (on all benchmarks). Raising the mutation made PB perform worse. EGA with
MS performed best at 50% - 60% mutation rate, on all benchmarks. We may conclude
that MS is the crossover operator that contributes the most at obtaining a good average
mapping cost. The rest of the operators rely significantly more on the mutation operator.
 In conclusion, in terms of average mapping cost, the Elitist Evolutionary Strategy
with OSA mutation performs the best. The Energy Aware Genetic algorithm has the best
behavior with OSA mutation and with PMX crossover. Our developed Mapping
Similarity crossover gives similar results: its normalized absolute deviation is with only
0.25% worse than the one of PMX. NPB performs worse on the big benchmarks. Its
deviation is with 1% higher that the one of PMX.

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

118

Similarly to the average normalized absolute deviation metric, we also computed
the minimum NAD and the maximum NAD.

0.00% 0.02% 0.04% 0.06% 0.08% 0.10% 0.12% 0.14% 0.16% 0.18% 0.20% 0.22% 0.24% 0.26% 0.28% 0.30% 0.32%
10

20

30

40

50

60

70

80

90

100

EGA-SWAP EGA-OSA EGA-MS-SWAP EGA-MS-OSA EGA-MS-OSA (1)
EGA-MS-OSA (2) EGA-NPB-SWAP EGA-NPB-OSA EGA-PMX-SWAP EGA-PMX-OSA
EES-SWAP EES-OSA OSA

Minimum NAD [%]

M
ut

at
io

n
p

ro
ba

b
ili

ty
 [%

]

Fig. 92 Algorithms’ comparison based on their minimum normalized absolute deviation, from their

common minimum average cost (only big benchmarks)

In almost all cases we obtained the minimum NAD at the same mutation probability
where the average NAD is. From this point of view, the biggest difference is for EGA-
PMX-OSA, which has the average NAD at 100% mutation rate and the minimum NAD
at 70%. EES-OSA, EGA-NPB-OSA and EGA-OSA have zero minimum NAD. This
means these algorithms found for at least one big benchmark the minimum average
mapping cost.

5.90%
6.40%

6.90%
7.40%

7.90%
8.40%

8.90%
9.40%

9.90%
10.40%

10.90%
11.40%

11.90%
12.40%

12.90%
13.40%

13.90%
14.40%

14.90%

10

20

30

40

50

60

70

80

90

100

EGA-SWAP EGA-OSA EGA-MS-SWAP EGA-MS-OSA EGA-MS-OSA (1)
EGA-MS-OSA (2) EGA-NPB-SWAP EGA-NPB-OSA EGA-PMX-SWAP EGA-PMX-OSA
EES-SWAP EES-OSA OSA

Maximum NAD [%]

M
ut

at
io

n
p

ro
ba

b
ili

ty
 [%

]

Fig. 93 Algorithms’ comparison based on their maximum normalized absolute deviation, from their

common minimum average cost (only big benchmarks)

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

119

The smallest maximum normalized absolute deviation was obtained with our developed
MS crossover (with and without OSA mutation). EGA-MS-SWAP is the single algorithm
with a maximum deviation that is lower than OSA’s. EES-OSA is the only algorithm
with OSA mutation that has a maximum NAD exceeding OSA’s maximum deviation.

Next, we are interested to find how good are the best mappings found by each
algorithm. In order to compare the best solutions found by all algorithms, we have
identified for each application the best solution found by all algorithms. Then, for each
application, with each algorithm and mutation probability, we have computed the
additional energy (AE) its best mapping consumes, with respect to the best solution found
by all algorithms. Using the same notation like for NAD computation, we define the

Additional Energy metric as
mb

m

m x

Xx
AE bb

b

}min{ '−
= . In this case however, we work with a

different data set. '
bX contains the minimum mapping energies (not the average ones, like

in the previous case). Finally, like for average NAD, we averaged the additional energies
for all benchmarks. The following chart presents these results. We show for every
algorithm the value at the mutation level where it obtained the lowest average additional
energy.

0.25% 0.35% 0.45% 0.55% 0.65% 0.75% 0.85% 0.95% 1.05% 1.15%
10

20

30

40

50

60

70

80

90

100

EGA-SWAP EGA-OSA EGA-MS-SWAP EGA-MS-OSA EGA-MS-OSA (1)
EGA-MS-OSA (2) EGA-NPB-SWAP EGA-NPB-OSA EGA-PMX-SWAP EGA-PMX-OSA
EES-SWAP EES-OSA OSA

Average AE [%]

M
ut

at
io

n
pr

o
ba

bi
lit

y
[%

]

Fig. 94 Average additional energy consumed by the best mappings found by each algorithm,

compared to the best mappings found by all algorithms

EGA-MS-OSA is the algorithm that has the most mappings that are the best. On average,
the best mappings found with this algorithm introduce just 0.29% additional energy. Very
close to this result is EES-OSA, with 0.3% additional energy. After EGA-PMX-OSA
(0.36%), follow EGA-NPB-OSA and EGA-MS-OSA (1), both with 0.52% additional
energy. Note that all the algorithms except EES-SWAP and EGA-PMX-SWAP find, on
average, better mappings than OSA. This chart also shows that swap mutation produces
worse mappings than OSA mutation, regardless the algorithm. However, there is an
exception: EGA-MS-OSA (2) does not produce better mappings than all algorithms with
swap mutation.

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

120

We conclude our solution quality based analysis by showing how often each
algorithm manages to reach the best solution. We refer to the best solution found by all
algorithms, not to the best solution each algorithm found. Hence, it is possible an
algorithm has a zero best solution percentage. We define the Averaged Best Solution

percentage at mutation rate m as [%]
...21

B

BSBSBS
BSAverage mmm B

m

+++
= .

mbBS is

the Best Solution percentage for benchmark b, at mutation level m. It represents how
many times an algorithm finds the best mapping, found by all algorithms.
 On the big benchmarks, OSA is unable to find the best solution. Also, not all of
the evolutionary algorithms manage to reach the best solution. This may be seen in the
following figure.

0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00% 14.00% 16.00% 18.00% 20.00% 22.00%
10

20

30

40

50

60

70

80

90

100

EGA-SWAP EGA-OSA EGA-MS-SWAP EGA-MS-OSA EGA-MS-OSA (1)
EGA-MS-OSA (2) EGA-NPB-SWAP EGA-NPB-OSA EGA-PMX-SWAP EGA-PMX-OSA
EES-SWAP EES-OSA OSA

Average BS [%]

M
ut

at
io

n
pr

o
ba

bi
lit

y
[%

]

Fig. 95 Average best solution percentage on big benchmarks

EGA-NPB-OSA is the algorithm that has the highest best solution percentage, which is
22% at 90% mutation probability. EES-OSA and EGA-OSA have a value of 20%. Than,
with just 2%, we have EGA-PMX-OSA, EGA-MS-OSA and EGA-MS-SWAP. We
notice all the algorithms using swap mutation are unable to reach the best solution. The
only exception is EGA-MS-SWAP.
 Our conclusion is that NPB crossover gives the best solution percentage, on the
big benchmarks. Mapping Similarity and PMX crossovers give a similar best solution
percentage. OSA mutation is essential for EES because with swap mutation EES
performs worse even than EGA with NPB crossover and swap mutation.

Regarding the optimal mutation probability, we observed there are algorithms,
like EGA-NPB-SWAP, for which we obtained exactly the same mutation rate. However,
in general there is no ideal mutation probability. Our experiments indicate the optimal
mutation probability may vary from 20% up to 100%. For EGA-MS-OSA, we got the
same optimal mutation probability in terms of average and best mapping cost. We
conclude that mutation probability is application and algorithm dependent. The lowest
mutation rate is consistently encountered when working with our developed Mapping
Similarity crossover. This indicates MS is the crossover operator that relies the least on

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

121

mutation to find the best NoC application mapping. We tried to limit the similarity
function of MS by considering only the cores which are one or two hops apart in the
NoC. Overall, we did not obtain significantly better results. EGA-MS-OSA (1) and EGA-
MS-OSA (2) require a higher mutation probability to function optimally.

We present next how some of our algorithms converge in time. Since the previous
results showed us that OSA mutation gives better results than swap mutation, we focus
only on these algorithms: EGA-OSA, EGA-PMX-OSA, EGA-NPB-OSA, EGA-MS-OSA
and EES-OSA. We ran each of the five algorithms for 1000 generations per application.
To improve the accuracy of our simulations, we ran each application for 100 times (by
setting the random number generator seed from 1 to 100). Finally, we averaged the
energy cost of all 100 mappings per application and per generation. We worked with the
mutation values determined by our average cost analysis.

Fig. 96 shows how the five algorithms converge on our biggest benchmark. We
mention that for all the other benchmarks we obtained the same behavior, as we will
detail next.

Fig. 96 Algorithms’ convergence for 215-cores benchmark

All algorithms manage to reduce the mapping energy significantly, within the first 100
generations. EGA-OSA has the lowest convergence speed. EGA-PMX-OSA, EGA-NPB-
OSA and EES-OSA behave approximately the same. EGA-MS-OSA is the algorithm that
converges the fastest during the first generations. After that, its convergence speed
decreases and it is outrun by EGA-PMX-OSA, EGA-NPB-OSA and EES-OSA. We
believe this is justified by the greedy approach from the second phase of our Mapping
Similarity crossover.
 We measured when each algorithm reaches its best solution during the 1000
generations, for each benchmark and we averaged the results. EGA-OSA converges in
732 generations. It requires the most number of generations to obtain its mapping with
the best communication energy. EGA-MS-OSA converges in 562 generations.

0 100 200 300 400 500 600 700 800 900 1000
0.00E+000

1.00E+010

2.00E+010

3.00E+010

4.00E+010

5.00E+010

6.00E+010

7.00E+010

EGA-MS-OSA EGA-PMX-OSA EES-OSA EGA-NPB-OSA EGA-OSA

Generations

Av
er

a
g

e
e

n
er

g
y

[p
ic

o
Jo

u
le

]

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

122

Algorithms EGA-PMX-OSA, EGA-NPB-OSA and EES-OSA require 475 generations.
EES-OSA is the algorithm that, on average, has the fastest convergence speed (424
generations).

Finally, we switch from a single objective to multi-objective Network-on-Chip
application mapping. Besides minimizing communication energy, we are now also
interested in obtaining a thermal balanced NoC design. Using NSGA-II and SPEA2
genetic algorithms implemented in the jMetal library, augmented with all our genetic
operators, we evaluated NoC mappings for all-mocsyn. This is the benchmark that
contains all E3S applications. For E3S we know how much power the IP cores consume
to execute a particular task. Each algorithm ran once, with each crossover – mutation
combination, for 1000 generations. Each time we started from the same initial population.
We used the optimal mutation probabilities determined by our average mapping cost
analysis.
 Fig. 97 shows, for every algorithm, the (normalized) hypervolume [113] obtained
at each generation. For a minimization problem (like ours), the hypervolume is defined as
the volume enclosed by the Pareto front and a reference point. The coordinates of this
point are determined by the maximum values of the objectives. The values are also
normalized using the (constant) volume between the coordinate systems’ origin and the
hypervolume reference point.

Fig. 97 (Normalized) hypervolumes, for all evaluated algorithms

The hypervolume grows significantly until the first 200 – 300 generations, for all
algorithms. Then, it keeps growing slowly until the last generation. This indicates how
the algorithms converge. The algorithms using our developed Mapping Similarity
crossover have a very fast convergence speed within the first 100 generations. However,
in the end, their hypervolumes are the smallest. This indicates MS leads to the worse

0 100 200 300 400 500 600 700 800 900 1000
0.23%
0.25%
0.27%
0.29%
0.31%
0.33%
0.35%
0.37%
0.39%
0.41%
0.43%
0.45%
0.47%
0.49%
0.51%
0.53%
0.55%
0.57%
0.59%
0.61%
0.63%

NSGAII-PMX SPEA2-PMX NSGAII-PMX-OSA SPEA2-PMX-OSA SPEA2-NPB-OSA NSGAII-NPB-OSA

NSGAII-NPB SPEA2-NPB SPEA2-PB-OSA NSGAII-PB-OSA SPEA2-PB NSGAII-PB

NSGAII-MS-OSA SPEA2-MS NSGAII-MS SPEA2-MS-OSA

Generations

(N
or

m
al

iz
ed

) h
yp

er
vo

lu
m

e

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

123

performance in this multi-objective case. However, if we want fast results, then this will
be a suitable crossover. Looking at the hypervolume values within the last generations,
we ordered the algorithms. This order may be seen in the chart’s legend. It may be
observed that PMX performs the best. It is followed by NPB, PB and finally MS. We also
observed that both NSGA-II and SPEA2 performed better with PMX and swap mutation.
The performance with OSA mutation was worse. These multi-objective results appear to
be in contradiction with our previous single-objective results. The explanation resides in
the fact that our two objectives are in a mutual contradiction. OSA mutation, MS and
NPB crossover work to optimize energy but, this implicitly leads to worsening the NoC
mappings in terms of thermal balance. NPB is more suitable than MS (in this case)
because it just identifies hot spot cores, in terms of energy. However, they may also be in
terms of thermal balance because a highly communicating core might also have a higher
temperature.
 Fig. 98 shows the Pareto front obtained in the last generation by combining the
Pareto fronts of all the evaluated algorithms. This combined Pareto front holds only the
non-dominated individuals from all the merged Pareto fronts.

Fig. 98 Combined Pareto front (generation 1000)

It may be seen that PMX is the single crossover that leads to the best solutions, found by
either NSGA-II or SPEA2. We also observe there are a lot of good solutions in terms of
energy. All these mappings were found using OSA mutation. With swap mutation, we
managed to find three good solutions in terms of thermal balance. The significantly
higher number of good energy-biased solutions indicates the fact we tried to optimize
only energy with NoC application mapping knowledge. Probably using a crossover which
also optimized energy was too much bias towards a single objective. This is how we
explain PMX was the best performing crossover. Anyway, PMX was one of the best
performing crossovers in the single-objective case, too.

7.9 Summary
We presented in this chapter the process of design, evaluation and optimization of some
efficient domain-knowledge evolutionary algorithms for Network-on-Chip application
mapping. We developed in UniMap an Energy- and performance-aware Genetic

Designing Domain-Knowledge Evolutionary Algorithms for Network-on-Chip
Application Mapping

124

Algorithm (EGA). EGA is integrated into jMetal library, which is now part of UniMap.
Along with EGA, we also evaluated the Elitist Evolutionary Strategy (EES) algorithm.

We showed all our evaluated algorithms work better with OSA mutation than
with swap mutation. One may easily introduce any NoC application mapping algorithm,
into any evolutionary algorithm, as a mutation operator. The influence of the introduced
algorithm may be easily controlled through mutation probability.
 Besides optimizing our evolutionary algorithms with context-aware mutation, we
also developed two specific crossover operators: NoC Position Based and Mapping
Similarity. We also worked with other two standard crossover operators for permutation
problems: Position Based crossover, developed by us as a jMetal extension and Partially
Mapped crossover, available in jMetal. Having four crossovers, two mutations, a genetic
algorithm and an elitist evolutionary strategy, we evaluated twelve variants of
evolutionary algorithms. All these algorithms were compared with the Optimized
Simulated Algorithm, which served as a baseline. We found that all the best solutions
were found by evolutionary algorithms (none by OSA), for the big benchmarks. This
proves EAs are superior to OSA for NoCs with tens, hundreds of nodes.
 We tried to find out how crossover and mutation operators influence the
evolutionary algorithms. We performed an extensive solution quality analysis by
measuring the average mapping energy, the best mappings’ cost and the best solution
percentage. We found MS to be the crossover operator that contributes the most at
obtaining a good mapping. MS works best at 50% - 60% mutation probability. The rest of
crossovers require higher mutation rates to get their best average mapping cost (PMX and
NPB work best at 100% mutation, in terms of average cost). Mapping Similarity is the
only crossover operator that performs well, on average, regardless of the mutation
operator. EGA obtained the best average mapping costs with PMX and MS crossovers.
By measuring the best solution percentage, we found that NPB leads EGA to the highest
value, on the big benchmarks.
 We also tried to improve the performance of our Mapping Similarity crossover,
by limiting the similarity function to IP cores that are one or two hops away from each
other. However, we did not find significantly better results.
 Our developed genetic algorithm performed, in general, the best with MS and
PMX crossovers. However, our best results were obtained with Elitist Evolutionary
Strategy, using OSA mutation. EES-OSA was the algorithm that also converged the
fastest. Although we managed to improve the genetic algorithm through our crossover
operators, using an algorithm that works only with (context-aware) mutation proved to be
better. Finding a suitable context-aware crossover for NoC application mapping is more
difficult than finding an efficient context-aware mutation.

We also tried to find the optimal mutation probability for our algorithms.
However, this depends a lot on the algorithm and on the benchmark. Our optimal
mutation probabilities range from 20% to 100%.

Finally, we did a multi-objective evaluation using NSGA-II and SPEA2,
improved with our genetic operators. Since our two objectives are contradictory, our
developed operators did not lead to the best performance. However, we did find the best
solutions, in terms of energy, with OSA mutation. A suitable crossover operator for the
NoC application mapping problem is even more difficult to find if we consider multi-
objective optimization.

“The greatest intelligence is precisely the one that suffers most from its own limitations.”

André Gide

125

8 Application Driven Automatic Design Space
Exploration for System-on-Chip Architectures

In this chapter we propose a method for performing an application driven automatic
design space exploration for System-on-Chip (SoC) architectures. We integrate UniMap
with a Framework for Automatic Design Space Exploration (FADSE) [127] with the
purpose of automatically finding the best SoC design for any given application, in a
multi-objective way. Our objectives are: SoC energy consumption, SoC area and
application runtime.

Using UniMap’s features, we simulate an entire computing system, consisting of
tens of heterogeneous IP cores that are mapped onto the nodes of a Network-on-Chip.

FADSE automatically configures this System-on-Chip. It then simulates it using
UniMap’s simulator and gives the simulation results to the DSE algorithm that drives the
search process.

We show a feasible DSE workflow that meets our requirements and we identify
the most suitable SoC architectures, for a given application, in terms of energy, area and
runtime. We also compare four DSE multi-objective algorithms (two genetics and two
bio-inspired) with the purpose of identifying the algorithm that performs the best.

8.1 Related Work
We present next two examples that stress out the importance of an application driven
automatic design space exploration for Network-on-Chip designs.

An exhaustive design space exploration of Network-on-Chip architectures is
performed in [128]. The evaluated design space is obtained by considering NoC
parameters like: the number of network nodes, the network topology (butterfly, flattened
butterfly, fat tree, mesh and ring), the routing mechanism (static, minimal, oblivious
source routing), the switching technique (store-and-forward and wormhole) and the size
of messages, packets and buffers. It is shown that there is no NoC architecture, from the
researched design space, which is optimal across all of the used traffic patterns. For
example, a certain topology could best accommodate only some certain traffic patterns or,
if there is a best topology, it is very likely that the network resources must be allocated
differently, from workload to workload, so that the optimal performance is achieved. As
such, the authors of this paper propose a configurable device, capable of emulating
different NoCs. Such a device is called a polymorphic network because it allows the
configuration of the network topology, links width and buffers for each application. It
allows the instantiation of an arbitrary network, prior to application runtime. The
Operating System can configure the polymorphic network through a stream of bits which
contain the network configuration information for a particular application.

A polymorphic network is basically built from many buffers and crossbars. The
approach has the obvious advantage of flexibility. The NoC resources can be
interconnected in a lot of ways, which allows for different networks to be instantiated.
The main drawback of a polymorphic network is the required area budget.

Another example is related to the size of the NoC input buffers. It is shown in
[91] that using non-uniform input buffers determines a significant increase of the

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

126

network’s performance. This is because, especially when the network is congested, the
amount of buffering resources severely affects the performance of the Network-on-Chip
architecture. The authors propose an algorithm that detects the buffer which has the
highest probability to be full. The size of that buffer is then increased because the channel
that owns it would otherwise become a real performance bottleneck. The algorithm uses
as inputs some of the parameters of the system: the traffic pattern, the routing delay and
the current size of each buffer from the network.

Therefore, there is a huge number of possible NoC designs. Which is the most
suitable NoC architecture for a particular application must be determined using Design
Space Exploration (DSE) techniques. These methods imply heuristic algorithms, which
find near optimal solutions by considering one or more objectives (e.g.: performance,
energy consumption, area). Performing DSE requires a powerful, modular, flexible and
highly configurable framework for automatic design space exploration.
 xPipesCompiler [129] is a tool which allows the automatic instantiation of
application-specific Network-on-Chip architectures. The blocks that make a NoC
architecture (links, network interfaces and routers) are described in SystemC at cycle
level of accuracy. One of the advantages of this tool is that it allows the user to create
custom network topologies. This tool uses an input file to generate the network. The input
files contain information about the cores, switches, links and the relationships between
them. Routing tables for the network interfaces are also specified. This can be regarded as
a disadvantage of the xPipesCompiler: the instantiated network does not actually use a
routing protocol. The routing paths are specified by the user. The tool also performs
optimizations of the network components. For example, if a switch has only its input link
connected to a port, then the buffer and logic for an output port is not generated (because
it would anyway not be needed). This allows for power and area savings. Another
disadvantage of this tool is that, although it is application-specific, the network topology
must be specified manually, i.e. it cannot be determined based on the characteristics of
the application.
 We have already presented in Section 4.1 two frameworks for Network-on-Chip
design space exploration. SUNMAP is focused on NoC topology synthesis. The other
DSE tool is focused on multi-objective algorithms for Network-on-Chip application
mapping. UniMap, our developed unified framework for Network-on-Chip application
mapping, implements several application mapping algorithms that can be used to map
real applications onto different Network-on-Chip designs. The mappings can be evaluated
in a multi-objective manner, using either analytical models or a NoC simulator
(developed by us).
 We present next an approach for automatically determining the “best” System-on-
Chip (SoC) architecture, for any given (concurrent) application, from a multi-objective
point of view. The model used by this approach integrates UniMap with a Framework for
Automatic Design Space Exploration (FADSE) developed at our ACAPS research center
in Sibiu – see http://acaps.ulbsibiu.ro. This application driven DSE for NoC architectures
aims to optimally map the IP cores (running a particular application) onto the tiles of the
most suitable Network-on-Chip design. We also try to find the most suitable IP cores by
selecting them from a library of cores. We have three objectives: application runtime,
SoC energy and SoC area. We are interested in finding that SoC design that executes the
given architecture the fastest and it consumes the smallest amount of energy and it

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

127

occupies the smallest area. These objectives are contradictory because improving one of
them usually leads to a regression of at least one of the others.

8.2 Framework for Automatic Design Space Exploration
The Framework for Automatic Design Space Exploration (FADSE) [130], [131] is
developed by Horia Calborean from “Lucian Blaga” University of Sibiu, Romania, as
part of his PhD thesis [127]. FADSE is a client-server tool that includes many state of the
art algorithms through jMetal [86]. It can connect to almost any existing simulator and
then it can perform parallel evaluations with it. The FADSE server distributes evaluations
to the available clients (the number of clients can be dynamically changed). Each client is
instructed by the server to perform a simulation with a specified set of parameters. The
parameter values are determined by an evolutionary algorithm, with respect to the
objectives to be optimized. Since the DSE process can easily take a lot of time (weeks,
months), FADSE is designed to be able to recover from situations like failing clients,
network failure or even system power loss. Simulations are automatically resubmitted to
other clients in case of problems and more importantly, FADSE integrates a
checkpointing mechanism. This makes this tool reliable because the DSE process can
easily be restarted. This approach effectively avoids restarting the design space
exploration from the beginning. FADSE also uses a database for storing the simulation
results. This allows the results of already simulated configurations to be reused, which
reduces the time required to perform the exploration process.

FADSE was successfully used for a multi-objective, hardware-software co-design
exploration of the design space for a superscalar system [132], [133]. We briefly present
next the metrics and the some of the most representative multi-objective evolutionary
algorithms available in FADSE.

8.2.1 Metrics
Hypervolume and coverage are some of the most important metrics implemented in
FADSE for evaluating the DSE process and for comparing the search algorithms. We
present them next because they are used in this chapter.

8.2.2.1 Hypervolume
For a minimization problem, the
hypervolume [5] is defined as the
volume enclosed by the Pareto front
and a reference point. The
coordinates of this point are
determined by the maximum values
of the objectives. The values are also
normalized using the (constant)
volume between the coordinate
systems’ origin and the hypervolume
reference point. For a maximization

problem, the hypervolume is
enclosed by the Pareto front and the
coordinate system axes.

Fig. 99 Hypervolume for a two-objective minimization
problem [109]

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

128

FADSE computes the hypervolume after each generation of the evolutionary
algorithm. The evolution of this volume shows if the DSE algorithm makes progress.
When the hypervolume saturates we can decide to stop the search process. Hypervolume
is a useful metric to determine the convergence speed of an algorithm. It can also be used
to compare the solution qualities of different algorithms, when the same hypervolume
reference point is used for all algorithms.

8.2.2.2 Coverage
Coverage [5] is used to compare two algorithms. It is defined as the fraction of
individuals, produced by the second algorithm, which are dominated by individuals
produced by the first algorithm. For example, if Coverage(Alg1, Alg2) = F%, then F
percent of algorithm’s Alg2 individuals are dominated by individuals of Alg1 (one or
more, we do not know how many). When Coverage(Alg1, Alg2) =100%, at least one
individual from Alg1 dominates all individuals produced by Alg2.

This metric is used for determining which algorithm has a better solution quality
than the other. Coverage is more suitable for evaluating solution quality than
hypervolume is.

8.2.2 Multi-objective Algorithms
We present next four of the most representative evolutionary algorithms, available
through FADSE, which we used in this research: NSGA-II, SPEA2, OMOPSO and
SMPSO.

8.2.2.1 NSGA-II
Non dominated Sorting Genetic Algorithm (NSGA-II) [116] starts from a randomly
generated initial population, which is evaluated. An offspring population is obtained by
means of crossover and mutation. After the offspring is also evaluated, the two
populations are composed into a single one and sorted according to the domination
relationship. A fitness value is assigned to the individuals, which takes into consideration
the previous sorting and a crowding measurement. The crowding specifies the density of
these individuals on the Pareto front. The next population is formed by the best
individuals according to their fitness.

8.2.2.3 SPEA2
Strength Pareto Evolutionary Algorithm (SPEA2) [65] is a genetic algorithm that uses an
archive of non-dominated individuals. The fitness of each individual (I) is based on its
strength, i.e. how many individuals it dominates. A raw fitness is computed as the sum of
the strengths of the individuals that dominate I. To this raw fitness, density information is
added. This density is defined as the inverse of the distance to the nearest kth neighbor
individual (k is a parameter of the algorithm). SPEA2 updates its archive by keeping only
the best individuals from the offspring population and the archive. The updated archive
represents the new population with which the algorithm continues.

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

129

8.2.2.4 OMOPSO
OMOPSO (Our Multi-objective Particle Swarm Optimization) [134] is a Particle Swarm
Optimization (PSO) algorithm, which is inspired by the flight of birds in search for food.
A swarm (population in genetic algorithms’ terminology) has many particles
(individuals), which “fly” through space following the best performing particle at that
moment. Each particle is characterized by two parameters: position and speed. As every
particle tries to get closer to the current best particle, its two parameters change. The
change takes into account both the current global best and the particle’s personal best
solution found so far. Based on this change, the particle gets a new position and will be
reevaluated. After all the particles are evaluated, the new global best particle is selected,
the personal bests are updated and this entire process is reiterated. Obviously, a multi-
objective PSO algorithm can have multiple global best particles (leaders). The leader is
chosen using a sorting mechanism similar with the one implemented in NSGA-II.
OMOPSO has an extra step in which some of the individual’s genes are changed using
mutation.

8.2.2.5 SMPSO
Speed constrained Multi-objective Particle Swarm Optimization (SMPSO) [135] is an
algorithm similar to OMOPSO. The main difference is that the particle’s speed is
constrained so that it does not get too high.

8.3 Design Space Exploration Workflow
The ideal DSE workflow for our purpose is to search for the best NoC architecture for
every possible mapping of IP cores onto NoC tiles. For each possible mapping we would
have to search the most suitable NoC design. Each NoC design would be evaluated using
UniMap’s ns-3 NoC simulator. The complexity of this approach is CNPC cnIdealDSE ⋅⋅= ,

where n is the number of NoC nodes, c is the number of IP cores, N is the number of NoC
architectures evaluated for each mapping and C is the number of IP core types that can be
used for the c cores that execute the application. The first term describes the total number
of possible mappings, i.e. in how many ways c cores can be arranged onto n NoC tiles.

This number is factorial in size. ∏
=

=
p

k
kPN

1

, where p is the number of (ns-3) NoC

parameters and Pk is the number of possible values that parameter k may take.

Also ∏
=

=
c

k
kcC

1

, where ck is the number of IP cores that can execute the tasks assigned to

core ck ,1= (we consider a heterogeneous system, i.e. not any core is suitable to any
task). N and C are exponential numbers. It is obvious that CIdealDSE is a very big number.
For example, for a small NoC with n = 16 nodes, there are 16! possible mappings of c =
16 IP cores. If our NoC has (only) four parameters, each with ten values, then N = 104.
Also, let us consider that C = 1016, i.e. for each group of tasks we have ten types of cores
that can execute them. Thus, CIdealDSE = 16!.1020

≈ 2.1033. If each simulation would take
no more than one second (!), then we would need more than 63.1024 years to perform an
exhaustive search (on a single core system). Obviously this approach needs a tool like
UniMap to heuristically search among the total number of possible mappings. A tool like

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

130

FADSE is also needed to limit the number of simulated SoC designs (we gain speed but,
we find only near optimal solutions). Even so, this DSE approach would be extremely
time consuming. We would still require more than 300 years for just ten thousands
mappings and ten thousands SoC designs evaluated per mapping (one second per
simulation).

 The above DSE process is essentially a DSE in a DSE approach (an inner DSE).
UniMap DSE encapsulates the FADSE. We will make the DSE workflow faster if we
decouple UniMap DSE from FADSE DSE. This means we simulate each mapping on the
same, single, SoC architecture. Then we use FADSE to search for the best SoC design
only for mappings from the Pareto front found with UniMap DSE. The complexity of this
DSE workflow is cncnFADSEUniMapDSE PPCNPPC <<⋅⋅+= ,, , where P is the number of

UniMap DSE Pareto mappings. It is obvious that CUniMapDSE,FADSE < CIdealDSE (at the
expense of getting farther away from the optimal solutions). For the above example, if we
consider ten Pareto mappings found with UniMap, this approach will drastically reduce
the search time from 300 years to just 13 days. However, this second DSE workflow is
still very time-consuming because a simulation will most like take more than just a
second.

 Rather than using a simulator for evaluating each mapping generated by UniMap
on a default SoC architecture, we can use an analytic model to find out which mapping is
better. Obviously this further reduces the accuracy of the DSE process but, it makes it
faster and thus more feasible. The complexity of the DSE workflow is

cnanalyticcnFADSEyticUniMapAnal PBCNBPC <<⋅⋅+= ,)(, , where B is the number of best

analytic mappings. In this case, a mapping can be evaluated in less than a second. Using a
bit energy model to estimate the communication energy required to send a bit of data
from one NoC node to another, we evaluated a mapping in 0.04 ms on our HPC system
[106]. Considering for the above example that B = 10, we get a search time of 12 days.
Even if we got a similar time with the previous DSE workflow too, this estimation is
obviously more realistic because previously we considered that UniMap uses a simulator
for evaluating the mappings (only one second for simulating each mapping). In this case
UniMap works just with an analytic model; it does not use the NoC simulator. We still
work (for this rough estimation) under the assumption that a NoC simulation (generated
by FADSE) takes just a second but, we mention that we can distribute simulations with
FADSE on High Performance Computing systems.

 It is obvious that CUniMapAnalytic,FADSE < CUniMapDSE,FADSE < CIdealDSE. Because of
this, we use the third DSE workflow in this research. The following figure illustrates our
proposed application driven automatic design space exploration workflow for System-on-
Chip architectures.

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

131

Save best

mappingsMap cores

onto NoC
FADSE

Simulate SoC

architecture

Select

mapping

Mappings

database

ns-3 NoC

simulator IP cores

database

Select

cores

Apply

mapping

Output runtime, energy, area

UniMap
Fig. 100 Application driven DSE workflow for SoC designs

Our DSE workflow starts with mapping applications onto NoC architectures using

UniMap’s algorithms. The mappings are evaluated by estimating the NoC
communication energy with the analytical model from Section 3.1.3.2. The best solutions
found are saved into a database.
 For each application, FADSE searches for the best SoC design by considering the
first ten best mappings16. Note that we select these mappings from all best mappings
found by all UniMap mapping algorithms: Simulated Annealing, Branch and Bound,
Optimized Simulated Annealing and Elitist Genetic Algorithm and Elitist Evolutionary
Strategy, with all their variants, evaluated in Chapter 7.
 Then we configure FADSE to start a DSE process, driven by a multi-objective
algorithm. FADSE evaluates different System-on-Chip architectures. Firstly, it selects the
type for each IP core. The given mapping already contains information about what IP
core will execute what task. However, FADSE will try with other compatible IP cores as
well. Any IP core capable of executing a task is considered compatible with that task.
Note that the analytical model used for obtaining the best mappings does not account for
IP core types. Secondly, it instantiates a SoC architecture by placing the selected IP cores
onto the nodes of a NoC that it configures. Finally, it calls UniMap’s ns-3 NoC simulator.
We model the tasks’ execution using the approach presented in Section 4.2.2. The
network communications are created using our network traffic generator (see Section
 4.3.9). ns-3 NoC measures application runtime, SoC energy and SoC area. These are the
three objectives of our DSE workflow.

We use the E3S [56] IP core library, which provides data about the power
consumed by each core while executing a certain task and while idle and the area
occupied by every core.

16 A higher number of best mappings may be used depending on how many resources are available

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

132

For our NoC architecture, power and area metrics are measured using ORION 2.0
[96], which is integrated with UniMap’s NoC simulator (see section 4.3.10). We work
with the Network-on-Chip total power, which includes leakage and dynamic power for
routers and links. Similarly, NoC area is the sum of routers and links area.

We measure application runtime by running the application for a specified
number of CTG iterations. We determine the number of CTG iterations empirically, so
that the simulations run fast enough so that our DSE process ends in a feasible amount of
time.
 The output of this workflow is a Pareto front with the “best” (near optimal) SoC
configurations, for a particular application.
 In the next section we give details about how exactly we performed the
simulations, on which benchmarks, what architectural parameters we varied and how
UniMap and FADSE were configured. We must point out that, during the workflow, the
NoC topology is kept unchanged. This is because the topology is basically the single
NoC architectural element used by the mapping algorithms. Changing it would lead to
inconsistencies, i.e. doing and comparing mappings for different NoCs. Obviously, our
workflow may also be applied for different NoC topologies. By doing so we could also
determine the most suitable NoC topology. However, this would require adapting our
application mapping algorithms for these other NoC topologies. Only then we will be
able to obtain the best mappings for other NoC topologies.

8.4 Simulation Methodology
We chose to work with four of the benchmarks presented in Chapter 5: telecom, MPEG-
4, H.264 (CTG 0) and VOPD (CTG 0). Note that we present in this thesis only some
preliminary results. We plan to continue with this research. In the future we will evaluate
more applications and we will give more qualitative and quantitative results.

For each of the four benchmarks, we selected the first ten best mappings that we
obtained with all our algorithms from UniMap. telecom is a 30 cores application, mapped
on a 6x5 2D mesh NoC. MPEG-4, H.264 (CTG 0) and VOPD have 12, 16, and
respectively 16 IP cores. They are mapped onto 4x3, 4x4 and respectively 4x4 2D
meshes.

We chose the number of CTG iterations after performing some preliminary
simulations that showed us approximately how much time each simulation takes. We
wanted to simulate each benchmark for just several minutes, not more than ten. Thus, we
used ten CTG iterations for telecom, two for MPEG-4, four for H.264 (CTG 0) and one
for VOPD (CTG 0).

For all benchmarks we used the E3S IP core library. Since telecom is an E3S
benchmark, we know exactly which core types can execute each of its tasks. On average,
we have 20 core types for every telecom task. The other three benchmarks are not from
E3S benchmark suite. Therefore, we do not know what cores can execute their tasks and
in what time. However, for each IP core, E3S specifies a generic task for which we have
the execution time and power consumption. We considered all tasks from MPEG-4,
H.264 and VOPD as generic. Thus, all E3S IP cores can be used to execute every task of
these three benchmarks. The E3S IP core library contains a total of 34 cores.
 We vary the following Network-on-Chip parameters: network clock frequency,
input buffer size, flit size, packet size and routing protocol. The NoC clock frequency

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

133

varies from 100 MHz to 1 GHz, in steps of 100 MHz. The size of the network input
buffers is varied uniformly, from one to ten flits. The flit size is expressed in bytes. It is
given by a geometric progression with ratio 2, the initial value 4 and the final value 256.
The packet size is measured in number of flits. It varies from two flits, up to ten. Finally,
we use only Dimension Order Routing but, we allow for XY or YX routing. The network
bandwidth is automatically set, so that one flit can be transmitted in a single NoC clock
cycle.
 Therefore, the search
space determined by all possible
Network-on-Chip architectures
has a size of N = 12600. The
search space size given by the IP
core types (C) is, however, much
bigger.
 Regarding our design space exploration tool, we configured FADSE to run with
four multi-objective algorithms: NSGA-II, SPEA2, SMPSO and OMPSO. We decided to
stop the algorithms after 50 generations.
 We configured NSGA-II as indicated in [116]. Therefore, we used a population of
100 individuals. We employed standard genetic operators: single point crossover, bit flip
mutation and binary tournament selection. Crossover probability was set to 90% and
mutation probability was set to 3%. A telecom chromosome has the highest number of
genes, 35, because we vary five NoC parameters and because it is the benchmark using
the biggest NoC (30 cores placed onto a 6x5 2D mesh). Usually, the mutation rate for bit
flip mutation is 1 / n, where n is the number of genes (1 / 35 ≈ 3%). SPEA2 was
configured identically to NSGA-II.
 Similarly, SMPSO and OMOPSO used a swarm of 100 particles. The archive size
is also 100.

8.5 Experimental Results
We show next some preliminary results obtained with our previously presented
application driven design space exploration technique for System-on-Chip architectures.
We managed to explore all ten best mappings just for the telecom benchmark. For the rest
of benchmarks we explored only the first best mapping.

We start with the telecom DSE. In the next figure we use the hypervolume metric
to show how our four DSE algorithms progress while searching for the best SoC designs
for the telecom benchmark. We obtained hypervolumes for each DSE algorithm, on every
one of the ten telecom mappings. Then we computed the average hypervolume.

Benchmark Search space size
telecom 12600.2030 ≈ 1.35.1043
MPEG-4 12600.3412 ≈ 3.1022

H.264 (CTG 0) 12600.3416 ≈ 4.1028
VOPD (CTG 0) 12600.3416 ≈ 4.1028

Fig. 101 The search space size

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

134

0.17

0.19

0.21

0.23

0.25

0.27

0.29

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Generation Count

A
ve

ra
ge

 h
yp

er
vo

lu
m

e

NSGA-II SPEA2 SMPSO OMOPSO

Fig. 102 Average hypervolumes over all ten best telecom mappings

It can be seen that the two genetic algorithms (NSGA-II and SPEA2) obtained the best
hypervolumes. NSGA-II has a slightly faster convergence speed than SPEA2. In the last
ten generations, both of them saturate; they no longer find significantly better solutions.
SMPSO performs better than OMOPSO but, both PSO algorithms perform worse than
the genetic algorithms in terms of solution quality (we used the same hypervolume
reference point). However, they have the fastest convergence speed. Only after 8-9
generations the genetics recover and surpass the PSO algorithms.

We also compared the four algorithms using the coverage metric (results are
omitted due to space constraints). We concluded that SPEA2 has the best overall results.
The following figure shows the Pareto front obtained with SPEA2, by combining the
Pareto fronts from all ten telecom mappings.

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

135

Fig. 103 SPEA2 Pareto front, for telecom

We observe that the Pareto front contains solutions from all eight of the ten best telecom
mappings. We obtained the best energy consumption with the eight mapping. The
smallest area was given by mappings three and five. With exactly the same area, the third
mapping has a better energy, while the fifth has a better application runtime. Finally, the
lowest application runtime was found on a SoC design corresponding to mapping eight.
 It is interesting to see that we did not obtain the best energy with the first best
mapping, which analytically gave us the lowest NoC communication energy. This can be
due to several facts. Firstly, we analytically estimated only the NoC communication
energy. With this approach we compute the entire SoC energy (IP cores energy is also
included). Secondly, the analytical model is unable to capture the dynamic network
effects (network congestions). Thirdly, FADSE does not obviously perform an exhaustive
search. It is possible that we might get better energy results with mapping one than with
mapping eight. This shows the need to perform better exploration of the design space.
Using domain-knowledge to constrain the search space and applying fuzzy rules are two
approaches that could improve the DSE technique [127].
 Finally, we combined all the Pareto fronts obtained with all our algorithms, for all
ten telecom mappings.

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

136

Fig. 104 Combined Pareto front for telecom benchmark

It can be observed that all the solutions found with SMPSO and OMOPSO are dominated
by the solutions found with the genetic algorithms. While in terms of SoC area the best
solutions are the ones found with SPEA2 (with mappings 3 and 5), in terms of energy and
runtime, NSGA-II found, with mapping six, better results than SPEA2 (with mapping
eight).
 The following table summarizes the best SoC designs found for the telecom
application. Due to space constraints, we do not show the 30 IP cores selected for every
SoC architecture.

NoC parameters
Objective Algorithm Map

ping Frequency
[MHz]

Buffer
size

[flits]

Flit
size

[bytes]

Packet
size

[flits]

Routi
ng

SoC
energy
[Joule]

SoC
area

[mm2]

Applicati
on

runtime
[ms]

Energy NSGA-II 6 100 4 4 10 YX 0.09516 50.11 46.1144
Area SPEA2 5 200 1 4 10 XY 0.15818 37.37 46.1132
Area SPEA2 3 400 1 4 10 YX 0.16793 37.37 46.1111

Runtime NSGA-II 6 900 4 32 6 YX 0.34191 81.22 45.4

The lowest energy was obtained (in accordance with our intuition) when the NoC
operated at the lowest frequency allowed by our DSE workflow. The SoCs with the
smallest area use some of the smallest IP cores. Also, the NoC buffers are only one flit in
size. As compared with the best energy and runtime SoC designs, the two area designs
use only 25% NoC buffering resources. The two designs with the smallest area
essentially differ by the NoC frequency. The faster one uses a NoC that is twice faster.
The SoC with the best runtime runs telecom with more than half a millisecond than the

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

137

other three SoCs, which are differentiated in terms of speed by only a few fractions of a
microsecond. The best runtime SoC architecture also requires a much faster NoC. It also
operates with bigger packets. All these reflect on considerably higher energy and bigger
area. Finally, we also observe that routing also influences the architecture’s performance.
Our best SoC designs for telecom use both XY and YX routing protocols.

Now we continue with the MPEG-4 DSE. The following figure presents the
hypervolume of each DSE algorithm, for the best MPEG-4 mapping found analytically.

0.75

0.77

0.79

0.81

0.83

0.85

0.87

0.89

0.91

0.93

0.95

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Generation Count

H
yp

er
vo

lu
m

e

NSGA-II SPEA2 SMPSO OMOPSO

Fig. 105 Hypervolumes for the first best MPEG-4 mapping

The results obtained for telecom are consistent with the ones presented here. Again the
two genetic algorithms perform better than the particle swarm optimization algorithms.
NSGA-II converges faster than SPEA2. In terms of quality of results it seems that
NSGA-II is the best. Again, SMPSO performed better than OMOPSO. Like for telecom,
MPEG-4 results show us that it matters more the class the algorithm belongs to
(evolutionary or bio-inspired), rather than the specific implementation.

We computed the coverage, trying to choose the best algorithm from each class.
The results are presented in Fig. 106 and Fig. 107.

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

138

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation Count

C
ov

er
ag

e

Coverage(NSGA-II,SPEA2) Coverage(SPEA2,NSGA-II)

Fig. 106 Coverage comparison between NSGA-II and SPEA2, for MPEG-4

For the first generations no clear distinction can be made between the two algorithms.
However, looking at the last generations, we conclude that there are more individuals
produced by SPEA2 that dominate the NSGA-II individuals. This contradicts the
hypervolume chart where NSGA-II seemed to perform better. We thoroughly analyzed
the Pareto fronts obtained by the two genetic algorithms. Some of the solutions
discovered by NSGA-II are better than the ones obtained by SPEA2 and some are worse
(in accordance with the coverage metric). It is hard to establish the best one because it
depends on the requirements of the designer. Still, the results obtained by NSGA-II
seemed a little more spread in the objective space.
 The same behavior can be observed between OMOPSO and SMPSO. SMPSO
performed better from the hypervolume point of view, but here OMOPSO is the best.
Again, we analyzed the Pareto fronts approximations and from our point of view SMPSO
had better results. We emphasize that this is a subjective appreciation and for other
designers the order might be changed.

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

139

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation Count

C
ov

er
ag

e

Coverage(SMPSO,OMOPSO) Coverage(OMOPSO,SMPSO)

Fig. 107 Coverage comparison between SMPSO and OMOPSO, for MPEG-4

For our last comparison we selected the best algorithms from the coverage point of view:
SPEA2 and OMOPSO. In the next figure we present the coverage comparison between
the two algorithms. SPEA2 is clearly the best, by dominating almost 100% of the
individuals found by OMOSPO. OMOSPO does not dominate almost any individuals
obtained by the genetic algorithm. It is interesting to observe that OMOPSO is better for
the first generations. This is because of the faster convergence speed of the PSO
algorithms.

0%
20%
40%
60%
80%

100%

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation Count

C
ov

er
ag

e

Coverage(SPEA2,OMOPSO) Coverage(OMOPSO,SPEA2)

Fig. 108 Coverage comparison between SPEA2 and OMOPSO, for MPEG-4

 The following figure presents the most spread Pareto front, which was obtained
by the NSGA-II algorithm. Through interpolation we also obtained a surface grid that
gives us a better view of the Pareto surface.

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

140

Fig. 109 MEPG-4 NSGA-II Pareto front

As expected, it can be observed that there is no SoC design for the MPEG-4 application
that is best for all three objectives. The fastest designs consume more energy and occupy
more area. The slowest architectures consume less energy and need less area. In between
we have a lot of solutions that are better for energy and worse for area and vice versa.

We conclude this preliminary research by presenting the hypervolumes obtained
for the first best analytical mapping of H.264 and VOPD benchmarks.

0.235

0.24

0.245

0.25

0.255

0.26

0.265

0.27

0.275

0.28

0.285

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation Count

H
yp

er
vo

lu
m

e

NSGA-II SPEA2 SMPSO OMOPSO

Fig. 110 Hypervolumes for the first best H.264 mapping

Application Driven Automatic Design Space Exploration for System-on-Chip
Architectures

141

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1 5 9 13 17 21 25 29 33 37 41 45 49

Generation Count

H
yp

er
vo

lu
m

e

NSGA-II SPEA2 SMPSO OMOPSO

Fig. 111 Hypervolumes for the first best VOPD mapping

These H.264 and VOPD hypervolume results are in correlation with our previous results.
Our conclusion is that the genetic algorithms find better solutions than the particle swarm
optimization methods. The PSO algorithms manage to converge faster only for the H.264
decoder. For VOPD, SMPSO performs clearly better than OMOPSO. We also observe an
unsteady convergence speed for the PSOs. For a large number of generations their
evolution is insignificant. Then, they manage to find at least one significantly better
individual, which makes their hypervolume grow noticeable.

8.6 Summary
We have proposed an application driven automatic DSE technique for System-on-Chip
architectures. Our DSE method involves our developed UniMap and FADSE [127].

The goal was that, for a given application, to automatically determine the best
SoC design, with the three objectives: SoC energy, SoC area and application runtime.

In order to speedup the exploration, we started the search from some given NoC
mappings of our evaluated applications. These mappings are the best determined
analytically with all UniMap’s mapping algorithms. Then, using UniMap’s Network-on-
Chip simulator, FADSE searched for these mappings the most suitable IP cores and NoC
architecture so that our three objectives are minimized.

We showed that the best analytical mappings are not necessarily the best ones
when using a NoC simulator. This is because the simulator also accounts for the network
dynamics. Another reason is that our simulator also models the processing elements.

We found the best energy SoC (SoCE) for telecom to be only 1.5% slower than
the fastest SoC (SoCR) for telecom, while the energy is 2.6 times lower. However, its area
is 34% bigger than the smallest SoC (SoCA) we found. SoCA consumes more than 66%
more energy and its runtime is just a few microseconds better (than SoCE). SoCR occupies
the biggest area being 1.17 times bigger than SoCA and 62% bigger than SoCE.

Another conclusion is that the genetic algorithms were clearly more suited for our
DSE workflow than the particle swam optimization methods. Still, the PSO algorithms
converge faster for most of the benchmarks.

“Difficulties increase the nearer we approach our goal.”

Johann Wolfgang von Goethe

142

9 Conclusions and Further Work

This work addresses the Network-on-Chip application mapping problem. After we
introduced the novel Network-on-Chip paradigm in Chapter 2, we focused on the
mapping problem. Chapter 3 presents the problem along with a state of the art on the
heuristic algorithms used to address it. In Chapter 4 we show our developed unified
framework for the evaluation and optimization of Network-on-Chip application mapping
algorithms. In Chapter 5 we presented the benchmarks used in our research, in this
emerging NoC research field that still lacks a standard benchmarking methodology. With
UniMap, we evaluated and optimized a simulated annealing algorithm using a domain-
knowledge approach (Chapter 6). We also evaluated and optimized evolutionary
algorithms by proposing problem aware genetic operators (Chapter 7). Finally, in Chapter
 8, we proposed and used a design space exploration workflow for an application driven
automatic design space exploration for Systems-on-Chip. Our algorithms’ evaluations
were performed using both analytical models and simulators. We considered single and
multi-objective approaches.
More precisely, this thesis makes the following contributions:

� An introduction to Network-on-Chip architectures with an emphasis on the most
common network topologies and routing protocols used in this research field;

� Taxonomy for the classification of Network-on-Chip application mapping
algorithms;

� State of the art regarding algorithms for Network-on-Chip application mapping;
� UniMap: a developed unified framework for the evaluation and optimization of

NoC application mapping algorithms;
� UniMap runs on High Performance Computing Systems using job schedulers to

automatically and optimally distribute simulations;
� Common model based on XML schemas for representing real applications and

networks;
� UniMap integrates state of the art NoC application mapping algorithms like

Simulated Annealing and Branch and Bound;
� UniMap integrates jMetal, a library with single objective and multi-objective state

of the art evolutionary algorithms, which can be used as application mapping
algorithms;

� ns-3 NoC, our developed Network-on-Chip simulator, with two router
architectures, three routing protocols, three switching mechanisms and k-ary d-
cube topologies;

� Network traffic generator based on communication patterns of real applications,
described through Communication Task Graphs and Application Characterization
Graphs;

� ns-3 NoC integrates ORION 2.0, a state of the art tool for Network-on-Chip
power consumption and area estimation;

� Using ns-3 NoC, we showed that the Irvine architecture helps at decreasing the
network congestion. The network is significantly less congested when data flits
are transmitted faster than head flits;

Conclusions and Further Work

143

� With ns-3 NoC, we showed how increasing the network buffers’ size improves
the NoC’s average packet latency;

� Using ns-3 NoC, we evaluated different network topologies: 2D mesh, 2D torus,
3D mesh, 3D torus and hypercube. We concluded that topologies like tori and
hypercube can give better NoC performance than meshes can;

� UniMap integrates the E3S benchmark suite and some of the most used CTGs and
APCGs available in literature. Because NoC benchmarking is still work in
progress, we effectively created our own benchmark suite;

� We propose and use for Network-on-Chip benchmarking two communication
patterns taken from a H.264 decoder system available in the research community;

� Using domain-knowledge, we developed an Optimized Simulated Annealing
(OSA) algorithm. It performs a dynamic and implicit core clustering and limits
the number of iterations per annealing temperature based on the given application
and network.

� We showed that Simulated Annealing can be feasible for NoC application
mapping when domain-knowledge is used. OSA is approximately 99% faster than
a generic Simulated Annealing algorithm, without losing the solution quality;

� The results obtained with OSA showed that Simulated Annealing is feasible for
NoC 2D meshes larger than 10x10. Previous research stated the contrary;

� OSA is comparable to Branch and Bound in terms of memory consumption and
speed. It mapped 97 cores on a 10x10 2D mesh in a time slower by only 3% than
the time required by Branch and Bound;

� As the problem size increases, OSA gives significantly better solutions than
Branch and Bound. The mappings found with Branch and Bound were with more
than 70% worse than OSA’s mappings when working with more than 64 IP cores;

� We showed Branch and Bound’s limitations. This algorithm was unable to map
an application with 215 cores, onto a 15x15 NoC, because more than 98% of the
search space was pruned;

� We developed an Elitist energy- and performance-aware Genetic Algorithm
(EGA). EGA is integrated in jMetal;

� We extended jMetal with the Position Based crossover;
� We evaluated EGA and an Elitist Evolutionary Strategy (EES) using different

genetic operators (four crossovers, two mutations => 12 algorithm variants);
� We concluded that evolutionary algorithms are superior to algorithms like OSA,

for NoCs with tens, hundreds of nodes. We found that, for the big benchmarks, all
the best solutions were given by evolutionary algorithms (none by OSA);

� We proposed a meta-heuristic algorithm consisting of an evolutionary algorithm
that uses as mutation operator a state of the art application mapping algorithm;

� EGA and EES work better with OSA mutation than with swap mutation. OSA
integrated successfully into the Evolutionary Algorithms;

� We designed two problem specific crossover operators: NoC Position Based and
Mapping Similarity. NoC Position Based crossover improves the standard
Position Based crossover for our problem. Mapping Similarity crossover
exchanges information between the parent individuals. It does not simply work as
a mutation operator, like the other state of the art NoC application mapping
crossover operators do;

Conclusions and Further Work

144

� With NoC Position Based crossover, EGA had the best solution percentage on the
big benchmarks;

� We found Mapping Similarity to be the crossover operator that contributes the
most at obtaining a good mapping. It performed best at 50% - 60% mutation
probability. The rest of crossovers required higher mutation rates;

� We found EES to perform better than EGA. Although we managed to improve the
genetic algorithm through our crossover operators, using an algorithm that works
only with (context-aware) mutation proved to be better. Finding a suitable
context-aware crossover for NoC application mapping is more difficult than
finding an efficient context-aware mutation;

� EES with OSA mutation was the algorithm that managed to converge the fastest;
� Using two state of the art multi-objective algorithms (NSGA-II and SPEA2) with

our genetic operators, we evaluated (with analytic models) the mappings in terms
of NoC communication energy and NoC thermal balance. The two objectives are
contradictory and, as such, our developed operators did not lead to the best
performance. However, we did find the best solutions, in terms of energy, with
OSA mutation. A suitable crossover operator for the NoC application mapping
problem is even more difficult to find if we consider multi-objective optimization;

� UniMap connects with the Framework for Automatic Design Space Exploration;
� We proposed an application driven automatic Design Space Exploration

technique for System-on-Chip architectures. The goal is that, for a given
application, to automatically determine the best System-on-Chip design, with the
following objectives: SoC energy, SoC area and application runtime;

� Using our developed ns-3 NoC simulator and FADSE, we explored the NoC
architectural space for different real applications;

� We showed that the best analytical mappings are not necessarily the best ones
when using a NoC simulator;

� The genetic algorithms (NSGA-II and SPEA2) were clearly more suited for our
design space exploration workflow than the particle swam optimization methods
(SMPSO and OMOPSO). Still, the PSO algorithms converged faster.

As future work, we intend to improve UniMap. We are interested in extracting
communication patterns from parallel applications. The first step will be to integrate
CETA tool (see Section 4.2.1.2.3). This will allow us to obtain Communication Task
Graphs from shared memory parallel programs. The second step will be to similarly use
an MPI library that allows intercepting the communications from message passing
parallel applications.

 Another direction for extending our unified framework is to implement other state
of the art Network-on-Chip application mapping algorithms. For example, the
comparisons between OSA and Cluster Simulated Annealing (see Section 6.1) runtimes
are very likely to be unfair. This can be due to several reasons: (1) OSA is written in Java
but, we do not know yet how CSA is implemented, (2) OSA is energy aware and uses the
cost function from [40], while CSA is bandwidth and latency constrained, using the cost
function from [61] and (3) CSA does not specify the number of generations per
temperature level.

Also, we consider further improving our developed NoC simulator. Improving the

Conclusions and Further Work

145

router architecture with virtual channels and allocators is an example. This will bring our
router implementation closer to real router designs.

Regarding our developed crossover operators (see Section 7.4) they are suitable
only for the communication energy objective. They must be adapted to work in a multi-
objective case. Even OSA mutation was designed only for energy minimization.
Therefore, evaluation and optimization of such algorithms, in a multi-objective context
will be more difficult. Using standard crossover and mutation operators simplifies the
problem a lot but, such operators are not aware of the problem.

We also plan to continue our research regarding application driven automatic
design space exploration for System-on-Chip architectures (see Chapter 8). The presented
results are still preliminary. We intend doing more simulations so that we identify the
best SoC designs for applications other than telecom, too. We also intend to do a more
accurate modeling of our SoC designs by increasing the accuracy with which we simulate
the IP cores and by varying the NoC topology as well. As for the design space explorer,
we intend to use more domain-knowledge so that we can constrain and better explore the
huge architectural space. We believe our approach can be extended for performing
automatic design space exploration for High Performance Computing systems.

Finally, we refer to a research niche that we identified during this PhD thesis but,
unfortunately we have not had enough time to exploit it, yet. We believe that Network-
on-Chip application mapping problem can be addressed using graph theory. More
precisely, we refer to graph isomorphism, which is the problem of verifying if two
graphs are actually the same. Two graphs A = (VA, EA) and N = (VN, EN) are isomorphic if
and only if there is a bijective mapping NA VVM →: , between the graph nodes, such that

the following equivalence is true: NAA EeMeMEeeVee ∈⇔∈∈∀))(),((),(:, 212121 .

This means a unique mapping between the corresponding edges of the two graphs is
required. For weighted graphs, the condition can be extended to include the weights as
well. Subgraph isomorphism requires the mapping M to be only injective. Graph
monomorphism is a weaker type of subgraph isomorphism. The equivalence relation
must be just an implication (NAA EeMeMEeeVee ∈⇒∈∈∀))(),((),(:, 212121).

Considering the above definitions and that the two graphs (A and N) are an Application
Characterization Graph (APCG) and, respectively, a NoC topology graph, the Network-
on-Chip application mapping problem can be viewed as a graph monomorphism problem.
Indeed, it is mentioned in [136] that the quadratic assignment problem can be formulated
as a graph monomorphism problem. Currently, there is no known polynomial-time
algorithm for the monomorphism problem [137]. However, special graph types, like
planar graphs, can theoretically be solved in a linear time [138]. Using the Boyer-
Myrvold algorithm [139], we tested for planarity all the APCGs used in this work (see
section 5.3). All of them proved to be planar graphs. We also integrated in UniMap the
VF2 [140] graph matching algorithm and used it to determine if an isomorphism exists
between any APCG and its corresponding NoC topology graph. We found none but, this
is understandable because we should search for monomorphisms, not for isomorphisms.
We found little NoC research using this idea. Graph isomorphism is used in [141] to
identify the isomorphically unique NoC topology graphs. VF2 algorithm is used in [142]
to perform subgraph isomorphism in order to decompose an APCG into a set of
predefined communication pattern graphs. We believe approaching the NoC application
mapping problem as a graph monomorphism problem is worth researching.

146

10 Glossary

This section presents an alphabetical list of technical terms used in this work, mainly
from the field of Networks-on-Chip architectures. The definitions of these technical terms
are mainly taken from [24], [1], [25], [43].

Adaptive routing = An adaptive routing algorithm uses information about the
network’s state in making routing decisions. This
information may include the status of a node or link, the
length of queues for network resources, and historical
channel load information. Such an algorithm considers
multiple paths and chooses the one which is most suitable.
See also routing, deterministic routing and oblivious
routing.

Bandwidth = The maximum amount of information that can be
transmitted along a channel, in a unit of time. It is
measured in bits/s. See also channel.

Bisection bandwidth = The sum of the bandwidths of the minimum set of channels
that, if removed, partition the network into two equal
unconnected set of nodes. See also bandwidth, channel.

Broadcast = A broadcast is a multicast in which a packet is sent to all
destinations. See also multicast.

Channel = Consists of a transmitter, link and receiver. It allows the
(digital) information to flow between the network
interfaces attached to it. See also link.

Circuit switching = Switching mechanism by which the path from the source to
the destination is established and reserved until the
message is transferred over the circuit. See also packet
switching.

(Network) collision = A network collision occurs when more than one device
attempts to send a packet on a network segment at the same
time. Collisions are resolved by discarding and resending
(one at a time) the competing packets. See also packet.

Dateline = A conceptual line across a channel of a ring network (or
within a single dimension of a torus).

Deadlock = A situation when a packet waits for an event that cannot
occur; for example when no message can advance toward
its destination because the queues of the message system
are full and each is waiting for another to make resources
available. See also livelock.

Glossary

147

Deadlock-free
deterministic routing

= A deterministic routing algorithm that guarantees that a
deadlock will never arise. See also deadlock, routing and
deterministic routing.

(Node) degree = The number of channels entering and leaving each node.
See also channel.

Deterministic routing = A routing algorithm is deterministic (or non-adaptive) if
the route taken by a message is determined solely by its
source and destination, and not by other traffic in the
network. A deterministic routing algorithm always chooses
the same path between two nodes, even if there are
multiple possible paths. See also routing, oblivious routing
and adaptive routing.

(Network) diameter = The maximum number of links that must be traversed to
send a message to any node along a shortest path (the
length of the maximum shortest path between any two
nodes).

Direct network = Network that has each node connected to each of the other
nodes. See also indirect network.

Design Space
Exploration (DSE)

= Design Space Exploration (DSE) is the process of
searching through the possible hardware or software design
points to find an optimal design. DSE can both be
structural (different components) and parametric (fixed set
of components of which the parameters are tuned).

Fault = A requirement, design, or implementation flaw or deviation
from a desired or intended (logical) state. Also known as
defect, although defect more often refers to the physical
state.

Fault tolerance = The ability of a network to detect, isolate and recover from
faulty resources. See also fault.

Flit = A flow control unit is the minimum unit of information that
can be transferred across a link and either accepted or
rejected. It may be as small as a phit or as large as a packet
or message. See also phit, packet and message.

Flow = A flow is a sequence packets traveling between a single
source-destination pair and is the unit at which quality of
service is provided. It is possible for a source or destination
to support multiple flows concurrently. See also packet,
quality-of-service (QoS).

Flow control
mechanism

= Determines when the message, or portions of it, moves
along its route. Note that is common in literature [3] to say
that flow control equals switching. See also switching
mechanism.

Glossary

148

Hard error = A permanent, unrecoverable error. See also soft error.

Hard real-time = A system wherein not producing the result of an operation
before its deadline expires is equivalent to producing the
wrong result. See also soft real-time.

Header = The front of the packet. It usually contains the routing and
control information so that the switches and network
interface can determine what to do with the packet as it
arrives. See also packet and trailer.

Hot-spot = A hot-spot resource is one whose demand is significantly
greater than other, similar resources. For example, a
particular destination terminal becomes a hot-spot in a
shared memory multicomputer when many processors are
simultaneously reading from the same memory location
(for example, a shared lock or data structure).

Indirect network = Network that has nodes connected only to a specific subset
nodes, which form the edges of the network. See also
direct network.

Jitter = The maximum difference in the latency between two
packets within a flow. Low jitter is often a requirement for
video streams or other real time data for which the
regularity of data arrival is important. The jitter times the
bandwidth of a flow gives a lower bound on the size of
buffer required. See also packet, flow and latency.

Latency = The time required to deliver a unit of data (usually a packet
or message) through the network, measured as the elapsed
time between the injection of the first bit at the source to
the ejection of the last bit at the destination. See also
packet and message.

Link = A bundle of wires or fibers that carries an analog signal.

Livelock = A situation when the routing of a packet never leads to its
destination (can only occur with adaptive non-minimal
routing). See also deadlock.

Load balance = The measure of how uniformly resources are being utilized
in a network. A network is load-balanced if all the
(expensive) resources tend to saturate at the same offered
traffic.

Message = A message is the logical unit of data transfer provided by
the network interfaces. Because messages do not always
have a bounded length, they are often broken into smaller
packets for handling within the network. See also packet.

Glossary

149

Minimal routing = Routing algorithm that considers only the shortest path
routes from source to destination. See also routing and
non-minimal routing.

Multiprocessor
System-on-Chip
(MPSoC)

= A system-on-chip that uses multiple, often heterogeneous,
processors. See also SoC.

Multicast = A multicast packet can be sent to multiple destinations. See
also packet and unicast.

Network-on-Chip
(NoC)

= A Network-on-Chip (NoC) consists of a number of
interconnected heterogeneous devices (e.g. general or
special purpose processors, embedded memories,
application specific components, mixed-signal I/O
cores) where communication is achieved by sending
packets over a scalable interconnection network. No
global wiring is used by a Network-on-Chip. Wiring
resources are shared by the communicating devices.

Non-minimal routing = Routing algorithm that considers all the possible paths
from source to destination. See also routing and minimal
routing.

Oblivious routing = It includes deterministic routing. The route taken by a
message is determined solely by its source and destination
but, the same path is not chosen always. For example, a
random algorithm that uniformly distributes traffic across
all of the paths is an oblivious algorithm. See also routing,
deterministic routing and adaptive routing.

Packet = A self-delimiting sequence of digital symbols that logically
consists of three parts: a header, a payload and a trailer. See
also header, payload and trailer.

Packet switching = Switching mechanism by which the message is broken into
a sequence of packets. Packets are individually routed from
the source to the destination. See also circuit switching.

Payload = The part of the packet containing the data transmitted
across the network. See also packet.

Phit = A physical unit is the minimum size datagram that can be
transmitted in one link transaction. See also flit .

Quality-of-Service
(QoS)

= The bandwidth, latency, and/or jitter received by a
particular flow or class of traffic. A QoS policy
differentiates between flows and provides services to those
flows based on a contract that guarantees the QoS provided
to each flow, provided that the flow complies with
restrictions on volume and burstiness of traffic.

Glossary

150

Real-time = A real-time system is a system whereby the correctness or
quality of the output not only depends on the produced
value, but also on when this value becomes available. See
also hard real-time and soft real-time.

Reliability = The probability that a network is working at a given point
in time.

Router = Network component which drives the information though
the network.

Routing algorithm = The routing algorithm of a network determines which of
the possible paths, from source to destination, are used as
routes and which route is taken by each particular packet.

Saturation = A resource is in saturation when the demands being placed
on it are beyond its capacity for servicing those demands.
For example, a channel becomes saturated when the
amount of data that wants to be routed over the channel
exceeds its bandwidth. See also bandwidth.

Self-adaptive system = A self-adaptive system contains control logic to let the
system modify its execution based on the input and
environment without requiring external intervention.

Soft error = A soft error is a transient error. Hardware continues to
work correctly after the soft error occurred, but the data
may be corrupted permanently. See also hard error.

Soft real-time = In a soft real-time system the result of a calculation that
becomes available only after its deadline has passed will at
worst cause graceful degradation, but otherwise the system
will keep functioning correctly. See also hard real-time.

Store-And-Forward
(SAF) switching

= Packet switching mechanism where the entire packet is
received by a switch before it is forwarded to the next link.
See also packet switching.

Switch = Network component that provides the means to route
information from the source node to the destination node.

Switching mechanism = Determines how and when the data in a message traverses
its route. See also circuit switching, packet switching and
flow control mechanism.

System-on-Chip (SoC) = A System-on-Chip is a system whereby all components of
the entire computing system have been integrated on a
single integrated circuit.

Throughput = The amount of traffic (in bits/s) delivered to the destination
terminals of the network.

Glossary

151

Topology = The physical interconnection structure of the network. It
specifies the connection pattern of the network’s nodes.

Traffic = The sequence of injection times and destinations for the
packets being offered to the network. This sequence is
often modeled by a static traffic pattern that defines the
probability a packet travels between a particular source-
destination pair and an arrival process.

Trailer = The end of the packet. It typically contains error-checking
code. See also packet and header.

Unicast = A unicast packet has a single destination terminal (as
opposed to multicast). See also multicast.

Virtual Cut-Through
(VCT) switching

= Packet switching mechanism which does not buffer data at
the output. It allows data to cut through to the input of the
next router, before the whole packet was received at the
current router. It can block entire routing paths in the
network when a message gets blocked somewhere in an
intermediate node. In such a case, VCT switching falls
back to SAF switching. See also store-and-forward
switching and wormhole switching.

Virtual channel = A group of multiple buffers associated to the same physical
channel.

Virtualization = Basic technique that separates workloads from the physical
hardware. It allows for running legacy software on new
hardware, for dynamically adapting applications to
changing hardware resources, and for isolating software
domains (to do dedicated resource provisioning, or for
security).

Worst-Case Execution
Time (WCET)

= The Worst-Case Execution Time (WCET) is the maximal
execution time necessary for a part of a program to
perform its task assuming the worst possible
circumstances.

Wormhole switching = Packet switching mechanism which, compared to virtual
cut-through, buffers the flits in the nodes where they
currently are. See also virtual cut-through switching and
store-and-forward switching.

152

11 References

[1] M. Duranton et al., “The HiPEAC Vision,” HiPEAC Roadmap, 2010. [Online].

Available: http://www.hipeac.net/system/files/LR_3910_hipeac_roadmap-2010-
v3.pdf.

[2] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative
Approach, 4th Edition, 4th ed. Morgan Kaufmann, 2006.

[3] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. E. Jerger, and Y. Hoskote, “Outstanding
research problems in NoC design: system, microarchitecture, and circuit
perspectives,” Trans. Comp.-Aided Des. Integ. Cir. Sys., vol. 28, no. 1, pp. 3-21,
2009.

[4] G. Moore, “Cramming More Components onto Integrated Circuits,” Electronics,
vol. 38, no. 8, pp. 114-117, Apr. 1965.

[5] G. E. Moore, “Excerpts from a conversation with Gordon Moore: Moore’s Law,
2005,” URL ftp://download. intel. com/museum/Moores_Law/Video-
Transcripts/Excepts_A_Conversation_with_Gordon_Moore. pdf.

[6] L. Vinţan N., Arhitecturi de procesoare cu paralelism la nivelul instrucțiunilor.
Editura Academiei Române, Bucureşti, 2000.

[7] L. Vinţan N., Prediction Techniques in Advanced Computing Architectures. Matrix
Rom Publishing House, Bucharest, 2007.

[8] A. Florea and L. Vinţan N., Simularea şi optimizarea arhitecturilor de calcul în
aplicaţii practice. Editura Matrix Rom, Bucureşti, 2003.

[9] L. Vinţan N., “Direcţii de cercetare în domeniul sistemelor multicore,” Revista
Română de Informatică și Automatică, ICI București, vol. 19, no. 3, 2009.

[10] C. Radu, H. Calborean, A. Crapciu, A. Gellert, and A. Florea, “An Interactive
Graphical Trace-Driven Simulator for Teaching Branch Prediction in Computer
Architecture,” in The 6th EUROSIM Congress on Modeling and Simulation, 2007,
p. 58.

[11] A. Florea, C. Radu, H. Calborean, A. Crapciu, A. Gellert, and L. Vintan,
“Designing an Advanced Simulator for Unbiased Branches Prediction,”
Proceedings of 9th International Symposium on Automatic Control and Computer
Science, 2007.

[12] A. Florea, C. Radu, H. Calborean, A. Crapciu, A. Gellert, and L. Vinţan,
“Understanding and Predicting Unbiased Branches in General-Purpose
Applications,” Buletinul Institutului Politehnic Iasi, Tome LIII (LVII), fasc. 1-4,
Section IV, Automation Control and Computer Science Section, pp. 97-112, 2007.

[13] C. Radu, “Implementing a multicore Shared Memory Architecture using
Transaction Level Modelling with UNISIM,” Diploma project (Bachelor), “Lucian
Blaga” University of Sibiu, Romania (in Romanian, supervisor Professor Lucian
Vintan, PhD), Sibiu, Romania, 2008.

[14] C. Radu, H. Calborean, A. Florea, A. Gellert, and L. Vintan, “Exploring Some
Multicore Research Opportunities. A First Attempt.,” in Advanced Computer
Architecture and Compilation for Embedded Systems, Terrassa (Barcelona), Spain,
2009.

References

153

[15] T. Bjerregaard and S. Mahadevan, “A survey of research and practices of Network-
on-chip,” ACM Comput. Surv., vol. 38, no. 1, Jun. 2006.

[16] K. Asanovic et al., “The landscape of parallel computing research: A view from
berkeley,” Citeseer, 2006.

[17] P. Guerrier and A. Greiner, “A generic architecture for on-chip packet-switched
interconnections,” Proceedings of the conference on Design, automation and test in
Europe, pp. 250–256, 2000.

[18] A. Hemani et al., “Network on chip: An architecture for billion transistor era,” in
Proceeding of the IEEE NorChip Conference, 2000, pp. 166–173.

[19] W. J. Dally and B. Towles, “Route packets, not wires: on-chip inteconnection
networks,” in Proceedings of the 38th annual Design Automation Conference, Las
Vegas, Nevada, United States, 2001, pp. 684-689.

[20] D. Wingard, “Micronetwork-based integration for SOCs: 673,” Proceedings of the
38th annual Design Automation Conference, p. 677–, 2001.

[21] E. Rijpkema, K. Goossens, and P. Wielage, “A Router Architecture for Networks
on Silicon,” IN PROCEEDINGS OF PROGRESS 2001, 2ND WORKSHOP ON
EMBEDDED SYSTEMS, p. 181--188, 2001.

[22] S. Kumar et al., “A network on chip architecture and design methodology,” in
isvlsi, 2002, p. 0117.

[23] G. de Micheli and L. Benini, “Networks on Chip: A New Paradigm for Systems on
Chip Design,” Proceedings of the conference on Design, automation and test in
Europe, p. 418–, 2002.

[24] D. Culler, J. P. Singh, and A. Gupta, Parallel Computer Architecture: A
Hardware/Software Approach, 1st ed. Morgan Kaufmann, 1998.

[25] W. J. Dally and B. P. Towles, Principles and Practices of Interconnection
Networks, 1st ed. Morgan Kaufmann, 2004.

[26] J. Duato, S. Yalamanchili, and L. M. Ni, Interconnection Networks: An
Engineering Approach, 1st ed. Institute of Electrical & Electronics Enginee, 1997.

[27] J. P. Bowen, “Hypercubes,” [[Practical Computing magazine|Practical
Computing]], vol. 5, no. 4, pp. 97–99, Apr. 1982.

[28] J. Balfour and W. J. Dally, “Design tradeoffs for tiled CMP on-chip networks,” in
Proceedings of the 20th annual international conference on Supercomputing,
Cairns, Queensland, Australia, 2006, pp. 187-198.

[29] J. Kim, W. J. Dally, and D. Abts, “Flattened butterfly: a cost-efficient topology for
high-radix networks,” in Proceedings of the 34th annual international symposium
on Computer architecture, San Diego, California, USA, 2007, pp. 126-137.

[30] C. J. Glass and L. M. Ni, “The turn model for adaptive routing,” J. ACM, vol. 41,
no. 5, pp. 874-902, 1994.

[31] Ge-Ming Chiu, “The odd-even turn model for adaptive routing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 11, no. 7, pp. 729-738, Jul.
2000.

[32] A. A. Chien and J. H. Kim, “Planar-adaptive routing: low-cost adaptive networks
for multiprocessors,” J. ACM, vol. 42, no. 1, pp. 91-123, 1995.

[33] E. Salminen, A. Kulmala, and T. D. Hamalainen, “Survey of Network-on-chip
Proposals,” OCP-IP, Mar-2008. [Online]. Available:

References

154

http://ocpip.org/uploads/documents/OCP-
IP_Survey_of_NoC_Proposals_White_Paper_April_2008.pdf.

[34] J. Hu and R. Marculescu, “DyAD: smart routing for networks-on-chip,” in
Proceedings of the 41st annual Design Automation Conference, San Diego, CA,
USA, 2004, pp. 260-263.

[35] “The Odd-Even Turn Model for Adaptive Routing.” .
[36] A. Agarwal, C. Iskander, and R. Shankar, “Survey of Network on Chip (NoC)

Architectures & Contributions,” Journal of Engineering, Computing and
Architecture, vol. 3, no. 1, 2009.

[37] M. Mirza-Aghatabar, S. Koohi, S. Hessabi, and M. Pedram, “An Empirical
Investigation of Mesh and Torus NoC Topologies Under Different Routing
Algorithms and Traffic Models,” in Proceedings of the 10th Euromicro Conference
on Digital System Design Architectures, Methods and Tools, 2007, pp. 19-26.

[38] H. Wang, L.-S. Peh, and S. Malik, “A Technology-Aware and Energy-Oriented
Topology Exploration for On-Chip Networks,” in Proceedings of the conference on
Design, Automation and Test in Europe - Volume 2, 2005, pp. 1238-1243.

[39] L. Bononi, N. Concer, M. Grammatikakis, M. Coppola, and R. Locatelli, “NoC
Topologies Exploration based on Mapping and Simulation Models,” in Proceedings
of the 10th Euromicro Conference on Digital System Design Architectures, Methods
and Tools, 2007, pp. 543-546.

[40] J. Hu and R. Marculescu, “Energy-aware mapping for tile-based NoC architectures
under performance constraints,” in Proceedings of the 2003 Asia and South Pacific
Design Automation Conference, Kitakyushu, Japan, 2003, pp. 233-239.

[41] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-completeness. WH Freeman & Co. New York, NY, USA, 1979.

[42] I. Walter, I. Cidon, A. Kolodny, and D. Sigalov, “The era of many-modules SoC:
revisiting the NoC mapping problem,” in 2nd International Workshop on Network
on Chip Architectures, 2009. NoCArc 2009, 2009, pp. 43-48.

[43] U. Y. Ogras, J. Hu, and R. Marculescu, “Key research problems in NoC design: a
holistic perspective,” in Proceedings of the 3rd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, Jersey City, NJ,
USA, 2005, pp. 69-74.

[44] R. P. Dick and N. K. Jha, “MOCSYN: multiobjective core-based single-chip
system synthesis,” in Proceedings of the conference on Design, automation and test
in Europe, Munich, Germany, 1999, p. 55.

[45] C. Grecu et al., “Towards Open Network-on-Chip Benchmarks,” in Proceedings of
the First International Symposium on Networks-on-Chip, Princeton, NJ, 2007, p.
205.

[46] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs for free,” in
Proceedings of the 6th international workshop on Hardware/software codesign,
Seattle, Washington, United States, 1998, pp. 97-101.

[47] Y.-K. Kwok and I. Ahmad, “Static scheduling algorithms for allocating directed
task graphs to multiprocessors,” ACM Computing Surveys (CSUR), vol. 31, pp.
406–471, Dec. 1999.

References

155

[48] D. Towsley, “Allocating programs containing branches and loops within a multiple
processor system,” IEEE Transactions on Software Engineering, vol. 12, pp. 1018–
1024, Oct. 1986.

[49] H. El-Rewini and H. H. Ali, “Static scheduling of conditional branches in parallel
programs,” Journal of Parallel and Distributed Computing, vol. 24, pp. 41–54, Jan.
1995.

[50] A.-H. Liu and R. P. Dick, “Automatic run-time extraction of communication graphs
from multithreaded applications,” in Proceedings of the 4th international
conference on Hardware/software codesign and system synthesis, Seoul, Korea,
2006, pp. 46-51.

[51] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 1st ed.
Prentice Hall, 1995.

[52] J. Hu and R. Marculescu, “Energy- and performance-aware mapping for regular
NoC architectures,” IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF
INTEGRATED CIRCUITS AND SYSTEMS, vol. 24, no. 4, p. 551--562, 2005.

[53] J. Hu and R. Marculescu, “Communication and task scheduling of application-
specific networks-on-chip,” IEE Proceedings - Computers and Digital Techniques,
vol. 152, no. 5, p. 643, 2005.

[54] C. Radu, “The Current Stage in Developing some Automatic Design Space
Exploration Algorithms for Networks-on-Chip,” Computer Science Department,
“Lucian Blaga” University of Sibiu, PhD Technical Report no. 2, Oct. 2010.

[55] T. Lei and S. Kumar, “A Two-step Genetic Algorithm for Mapping Task Graphs to
a Network on Chip Architecture,” in Proceedings of the Euromicro Symposium on
Digital Systems Design, 2003, p. 180.

[56] “The Embedded System Synthesis Benchmarks Suite (E3S) website.” [Online].
Available: http://ziyang.eecs.umich.edu/~dickrp/e3s/.

[57] R. Pop and S. Kumar, “A survey of techniques for mapping and scheduling
applications to network on chip systems,” School of Engineering, Jonkoping
University, Research Report, vol. 4, p. 4, 2004.

[58] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by Simulated
Annealing,” Science, vol. 220, no. 4598, pp. 671-680, May 1983.

[59] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 1st ed.
Prentice Hall, 1995.

[60] M. A. . Elmohamed, P. Coddington, and G. Fox, “A comparison of annealing
techniques for academic course scheduling,” Practice and Theory of Automated
Timetabling II, p. 92, 1998.

[61] S. Murali and G. D. Micheli, “Bandwidth-Constrained Mapping of Cores onto NoC
Architectures,” in Proceedings of the Conference on Design, Automation and Test
in Europe - Volume 2, 2004, p. 20896.

[62] K. Srinivasan and K. S. Chatha, “A technique for low energy mapping and routing
in network-on-chip architectures,” in Proceedings of the 2005 international
symposium on Low power electronics and design, San Diego, CA, USA, 2005, pp.
387-392.

[63] C. M. Fiduccia and R. M. Mattheyses, “A Linear-Time Heuristic for Improving
Network Partitions,” in 19th Conference on Design Automation, 1982, 1982, pp.
175- 181.

References

156

[64] G. Ascia, V. Catania, and M. Palesi, “Multi-objective mapping for mesh-based
NoC architectures,” in Proceedings of the 2nd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, Stockholm,
Sweden, 2004, pp. 182-187.

[65] M. Laumanns, L. Thiele, and E. Zitzler, “SPEA2: Improving the Strength Pareto
Evolutionary Algorithm for Multiobjective Optimization,” Evolutionary Methods
for Design Optimisation and Control, pp. 95-100.

[66] R. Tornero, V. Sterrantino, M. Palesi, and J. M. Orduna, “A multi-objective
strategy for concurrent mapping and routing in networks on chip,” in Proceedings of
the 2009 IEEE International Symposium on Parallel\&Distributed Processing,
2009, pp. 1-8.

[67] C. Radu and L. Vinţan, “UNIMAP: UNIFIED FRAMEWORK FOR NETWORK-
ON-CHIP APPLICATION MAPPING RESEARCH,” Acta Universitatis
Cibiniensis Technical Series, May 2011.

[68] C. Radu and L. Vinţan, “Towards a Unified Framework for the Evaluation and
Optimization of NoC Application Mapping Algorithms,” in ACACES 2010 Poster
Abstracts, Terrassa (Barcelona), Spain, 2010, pp. 163 - 166.

[69] C. Radu, “Unified Framework for Network-on-Chip Application Mapping,”
unimap - Project Hosting on Google Code. [Online]. Available:
https://code.google.com/p/unimap/. [Accessed: 04-Feb-2011].

[70] “ULBS HPC cluster.” [Online]. Available: http://zamolxe.hpc.ulbsibiu.ro/.
[Accessed: 07-Feb-2011].

[71] S. Murali and G. D. Micheli, “SUNMAP: a tool for automatic topology selection
and generation for NoCs,” in Proceedings of the 41st annual Design Automation
Conference, San Diego, CA, USA, 2004, pp. 914-919.

[72] G. Ascia, V. Catania, and M. Palesi, “A Multi-Objective Genetic Approach to
Mapping Problem on Network-on-Chip,” JUCS, vol. 22, p. 2006.

[73] R. Marculescu and U. Y. Ogras, “‘It’s a small world after all’: NoC performance
optimization via long-range link insertion,” Ieee Transactions On Very Large Scale
Integration Vlsi Systems, vol. 14, no. 7, pp. 693-706.

[74] “A Survey of Network-On-Chip Tools,” 31-Mar-2011. [Online]. Available:
http://scholarlyexchange.org/ojs/index.php/IJRRCS/article/view/8207. [Accessed:
22-Aug-2011].

[75] “The ns-3 network simulator website.” [Online]. Available: http://www.nsnam.org.
[76] F. Fazzino, M. Palesi, and D. Patti, “Noxim: Network-on-chip simulator,” URL:

http://sourceforge. net/projects/noxim [24.06. 2008] .
[77] B. Grot, J. Hestness, S. W. Keckler, and O. Mutlu, “Kilo-NOC,” in Proceeding of

the 38th annual international symposium on Computer architecture - ISCA ’11, San
Jose, California, USA, 2011, p. 401.

[78] Sheng Li, Jung Ho Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “McPAT: An integrated power, area, and timing modeling framework for
multicore and manycore architectures,” in 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2009. MICRO-42, 2009, pp. 469-480.

[79] S. Mahadevan, F. Angiolini, M. Storgaard, R. G. Olsen, J. Sparso, and J. Madsen,
“A Network Traffic Generator Model for Fast Network-on-Chip Simulation,” in

References

157

Proceedings of the conference on Design, Automation and Test in Europe - Volume
2, 2005, pp. 780-785.

[80] “The EEMBC website.” [Online]. Available: http://www.eembc.org.
[81] “Simics.net - The technical support site for the Virtutech Simics full system

simulation platform,” https://www.simics.net/, 2010. [Online]. Available:
https://www.simics.net/.

[82] “Tachyon Parallel / Multiprocessor Ray Tracing System,”
http://jedi.ks.uiuc.edu/~johns/raytracer/, 2010. [Online]. Available:
http://jedi.ks.uiuc.edu/~johns/raytracer/.

[83] E. Ort and B. Mehta, “Java Architecture for XML Binding (JAXB),” Java
Architecture for XML Binding (JAXB). [Online]. Available:
http://www.oracle.com/technetwork/articles/javase/index-140168.html.

[84] “XSD: XML Data Binding for C++,” CodeSynthesis XSD - XML Data Binding for
C++ . [Online]. Available: http://www.codesynthesis.com/products/xsd/.

[85] C. Radu, “Developing Network-on-Chip Architectures for Multicore Simulation
Environments,” Computer Science Department, “Lucian Blaga” University of Sibiu,
PhD Technical Report no. 1, Jun. 2010.

[86] J. J. Durillo, A. J. Nebro, and E. Alba, “The jMetal Framework for Multi-Objective
Optimization: Design and Architecture,” in CEC 2010, Barcelona, Spain, 2010, pp.
4138-4325.

[87] D. E. Knuth, The Art of computer programming: Seminumerical algorithms.
Addison-Wesley, 1981.

[88] D. H. Besset, Object-Oriented Implementation of Numerical Methods: An
Introduction with Java & Smalltalk, First Edition. Morgan Kaufmann, 2000.

[89] S. Schlingmann, “Selbstoptimierendes Routing in einem Network-on-a-Chip,”
Augsburg, Germany, 2007.

[90] S. E. Lee and N. Bagherzadeh, “Increasing the throughput of an adaptive router in
network-on-chip (NoC),” in Proceedings of the 4th international conference on
Hardware/software codesign and system synthesis, Seoul, Korea, 2006, pp. 82-87.

[91] Jingcao Hu, Umit Y. Ogras, and Radu Marculescu, “System-Level Buffer
Allocation for Application-Specific Networks-on-Chip Router Design,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 25,
no. 12, pp. 2919-2933, 2006.

[92] A. Gancea, “Simulator pentru proiectarea, evaluarea și optimizarea unor rețele de
interconectare tip NoC,” Diploma project (Bachelor), “Lucian Blaga” University of
Sibiu, Romania (in Romanian, supervisor Professor Lucian Vintan, PhD), Sibiu,
Romania, 2011.

[93] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides, Design Patterns: Elements of
Reusable Object-Oriented Software, 1st ed. Addison-Wesley Professional, 1994.

[94] W. Trumler, S. Schlingmann, T. Ungerer, J. H. Bahn, and N. Bagherzadeh, “Self-
optimized Routing in a Network-on-a-Chip,” presented at the 20th IFIP World
Computer Congress, Milano, Italy, 2008.

[95] E. Salminen, K. Srinivasan, and Z. Lu, “OCP-IP Network-on-chip benchmarking
workgroup,” OCP-IP, Dec-2010. [Online]. Available:
http://www.ocpip.org/uploads/dynamic_areas/Cv8XdaKTKDztFpWKPqsl/6189/No
C%20Working%20Group%20Overview%20WP.pdf.

References

158

[96] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi, “ORION 2.0: a fast and accurate
NoC power and area model for early-stage design space exploration,” in
Proceedings of the Conference on Design, Automation and Test in Europe, 3001
Leuven, Belgium, Belgium, 2009, pp. 423–428.

[97] D. Albonesi, “Power- and Reliability-Aware Microarchitecture,” in ACACES 2000
Course, Terrassa (Barcelona), Spain, 2009.

[98] C. Radu and L. Vinţan, “Optimizing Application Mapping Algorithms for NoCs
through a Unified Framework,” in Roedunet International Conference (RoEduNet),
2010 9th, Sibiu, Romania, 2010, pp. 259 - 264.

[99] E. G. T. Jaspers and P. H. N. de With, “Chip-set for video display of multimedia
information,” IEEE TRANS. CONS. ELECTR, vol. 45, p. 706--715, 1999.

[100] E. B. Van Der Tol and E. G. T. Jaspers, “Mapping of MPEG-4 decoding on a
flexible architecture platform,” MEDIA PROCESSORS 2002, vol. 4674, p. 1--13,
2002.

[101] E. B. van der Tol, “Mapping of H.264 decoding on a multiprocessor
architecture,” in Proceedings of SPIE, Santa Clara, CA, USA, 2003, pp. 707-718.

[102] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by Simulated
Annealing,” Science, vol. 220, no. 4598, pp. 671-680, May 1983.

[103] Simulated Annealing, Theory with Applications. Sciyo, 2010.
[104] Simulated Annealing. InTech, 2008.
[105] D. Fouskakis and D. Draper, “Stochastic Optimization: a Review,” International

Statistical Review, vol. 70, no. 3, pp. 315-349, Jan. 2007.
[106] C. Radu and L. Vinţan, “Optimized Simulated Annealing for Network-on-Chip

Application Mapping,” in Proceedings of the 18th International Conference on
Control Systems and Computer Science (CSCS-18), Bucharest, Romania, 2011, vol.
1, pp. 452–459.

[107] Z. Lu, L. Xia, and A. Jantsch, “Cluster-based Simulated Annealing for Mapping
Cores onto 2D Mesh Networks on Chip,” in Proceedings of the 2008 11th IEEE
Workshop on Design and Diagnostics of Electronic Circuits and Systems,
Washington, DC, USA, 2008, pp. 1–6.

[108] SLD:: System Level Design Group @ CMU, “NoCmap: an energy- and
performance-aware mapping tool for Networks-on-Chip,” SLD:: System Level
Design Group @ CMU, 2010. [Online]. Available:
http://www.ece.cmu.edu/~sld/wiki/doku.php?id=shared:nocmap.

[109] H. Orsila, E. Salminen, and T. D. Hämäläinen, “Best Practices for Simulated
Annealing in Multiprocessor Task Distribution Problems,” in Simulated Annealing,
I-Tech Education and Publishing KG, 2008, pp. 321-342.

[110] C. Radu and L. Vinţan, “Domain-Knowledge Optimized Simulated Annealing
for Network-on-Chip Application Mapping,” Submitted to an Elsevier journal, Sep.
2011.

[111] C. Radu, “Optimized Simulated Annealing for Network-on-Chip Application
Mapping,” Computer Science Department, “Lucian Blaga” University of Sibiu, PhD
Technical Report no. 3, Jun. 2011.

[112] A. E. Eiben and J. E. Smith, Introduction to Evolutionary Computing. Springer,
2008.

References

159

[113] C. A. C. Coello, D. A. V. Veldhuizen, and G. B. Lamont, Evolutionary
Algorithms for Solving Multi-Objective Problems, 1st ed. Springer, 2002.

[114] C. Radu, S. Mahbub, and L. Vinţan, “Developing Domain-Knowledge
Evolutionary Algorithms for Network-on-Chip Application Mapping,” Journal of
Systems Architecture (in review since July 25th, 2011).

[115] G. Ascia, V. Catania, and M. Palesi, “Mapping cores on network-on-chip,”
International Journal of Computational Intelligence Research, vol. 1, no. 1-2, pp.
109–126, 2005.

[116] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A Fast Elitist Multi-Objective
Genetic Algorithm: NSGA-II,” IEEE TRANSACTIONS ON EVOLUTIONARY
COMPUTATION, vol. 6, p. 182--197, 2000.

[117] W. Hung, C. Addo-Quaye, T. Theocharides, Y. Xie, N. Vijaykrishnan, and M. J.
Irwin, “Thermal-Aware IP Virtualization and Placement for Networks-on-Chip
Architecture,” in Proceedings of the IEEE International Conference on Computer
Design, 2004, pp. 430-437.

[118] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine
Learning, 1st ed. Addison-Wesley Professional, 1989.

[119] G. Syswerda, “A Study of Reproduction in Generational and Steady State
Genetic Algorithms,” in Foundations of Genetic Algorithms, 1990, pp. 94–101.

[120] D. E. Goldberg and R. Lingle, “Alleles, Loci, and the Traveling Salesman
Problem,” in Proc.\ of the International Conference on Genetic Algorithms and
Their Applications, Pittsburgh, PA, 1985, pp. 154-159.

[121] D. Whitley, “A Genetic Algorithm Tutorial,” STATISTICS AND COMPUTING,
vol. 4, p. 65--85, 1994.

[122] L. J. Eshelman, R. A. Caruana, and J. D. Schaffer, “Biases in the crossover
landscape,” in Proceedings of the third international conference on Genetic
algorithms, George Mason University, United States, 1989, pp. 10–19.

[123] K. Skadron, M. R. Stan, W. Huang, Sivakumar Velusamy, Karthik
Sankaranarayanan, and D. Tarjan, “Temperature-aware microarchitecture,” in 30th
Annual International Symposium on Computer Architecture, 2003. Proceedings,
2003, pp. 2- 13.

[124] C. C. N. Chu and D. F. Wong, “A matrix synthesis approach to thermal
placement,” in Proceedings of the 1997 international symposium on Physical
design, Napa Valley, California, United States, 1997, pp. 163–168.

[125] W. M. Spears, E.-mail Pears, and A. N. N. Mil, “Crossover or Mutation?,”
FOUNDATIONS OF GENETIC ALGORITHMS 2, vol. 2, p. 221--237, 1992.

[126] C. Radu, “Evolutionary Algorithms for Network-on-Chip Application
Mapping,” Computer Science Department, “Lucian Blaga” University of Sibiu, PhD
Technical Report no. 4, Jun. 2011.

[127] H. Calborean, “Multi-Objective Optimization of Advanced Computer
Architectures using Domain-Knowledge,” PhD Thesis, “Lucian Blaga” University
of Sibiu, Romania, 2011 (PhD Supervisor: Prof. Lucian Vintan, PhD), Sibiu,
Romania, 2011.

[128] M. M. Kim, J. D. Davis, M. Oskin, and T. Austin, “Polymorphic On-Chip
Networks,” SIGARCH Comput. Archit. News, vol. 36, no. 3, pp. 101-112, 2008.

References

160

[129] A. Jalabert, S. Murali, L. Benini, and G. De Micheli, “×pipesCompiler: a tool for
instantiating application specific networks on chip,” in Proceedings Design,
Automation and Test in Europe Conference and Exhibition, Paris, France, pp. 884-
889.

[130] H. Calborean and L. Vintan, “An Automatic Design Space Exploration
Framework for Multicore Architecture Optimizations,” in Proceedings of The 9-th
IEEE RoEduNet International Conference, Sibiu, Romania, 2010, pp. 202-207.

[131] H. Calborean and L. Vinţan, “Framework for Automatic Design Space
Exploration of Computer Systems,” Acta Universitatis Cibiniensis Technical Series,
May 2011.

[132] R. Jahr, T. Ungerer, H. Calborean, and L. Vintan, “Automatic Multi-Objective
Optimization of Parameters for Hardware and Code Optimizations,” in Proceedings
of the 2011 International Conference on High Performance Computing &
Simulation (HPCS 2011), 2011, pp. 308 – 316.

[133] H. Calborean, R. Jahr, T. Ungerer, and L. Vintan, “Optimizing a Superscalar
System using Multi-objective Design Space Exploration,” in Proceedings of the
18th International Conference on Control Systems and Computer Science (CSCS),
Bucharest, Romania, Calea Grivitei, nr. 132, 78122, Sector 1, Bucuresti, 2011, vol.
1, pp. 339–346.

[134] J. J. Durillo, J. García-Nieto, A. J. Nebro, C. A. C. Coello, F. Luna, and E. Alba,
“Multi-Objective Particle Swarm Optimizers: An Experimental Comparison.,” in
EMO’09, 2009, pp. 495-509.

[135] A. J. Nebro, J. J. Durillo, J. Garcia-Nieto, C. A. Coello Coello, F. Luna, and E.
Alba, “SMPSO: A new PSO-based metaheuristic for multi-objective optimization,”
in ieee symposium on Computational intelligence in miulti-criteria decision-making,
2009. mcdm ’09, 2009, pp. 66-73.

[136] D. E. Ghahraman, A. K. C. Wong, and T. Au, “Graph Optimal Monomorphism
Algorithms,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 10, pp.
181-188, 1980.

[137] “Graph Monomorphism Algorithms,” IEEE Transactions on Systems, Man, and
Cybernetics, vol. 10, pp. 189-196, 1980.

[138] G. S. Lueker and K. S. Booth, “A Linear Time Algorithm for Deciding Interval
Graph Isomorphism,” Journal of the ACM, vol. 26, pp. 183-195, Apr. 1979.

[139] “On the Cutting Edge: Simplified O(n) Planarity by Edge Addition.” [Online].
Available: http://academic.research.microsoft.com/Publication/1734993. [Accessed:
07-Sep-2011].

[140] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento, “Performance evaluation of
the VF graph matching algorithm,” pp. 1172-1177.

[141] N. K. Bambha and S. S. Bhattacharyya, “Joint application mapping/interconnect
synthesis techniques for embedded chip-scale multiprocessors,” IEEE Transactions
on Parallel and Distributed Systems, vol. 16, pp. 99-112, Feb. 2005.

[142] U. Y. Ogras and R. Marculescu, “Energy- and Performance-Driven NoC
Communication Architecture Synthesis Using a Decomposition Approach,” pp.
352-357.

