“Lucian Blaga” University of Sibiu
*Hermann Oberth” Engineering Faculty
Computer Engineering Department

Optimized Algorithms for
Network-on-Chip Application
Mapping

PhD Thesis

Author:
Ciprian RADU, MSc

PhD Supervisor:
Professor Lucian N. Vian, PhD

SIBIU, September 2011

Universitatea “Lucian Blaga” din Sibiu
Facultatea de Inginerie “Hermann Oberth”
Catedra de CalculatoageAutomatiziri

Algoritmi optimiza ti pentru
maparea aplicaiilor pe arhitectur
de tipul Network-on-Chip

Teza de doctorat

Autor:
Ing. Ciprian RADU

Condudator stiintific:
Prof. univ. dr. ing. Lucian N. Vi@an

SIBIU, Septembrie 2011

Dedicat fratelui meu... Dedicated to my brother...

http://alexraduland.wordpress.com/

Multumiri

Munca prezentatin aceast tezi de doctorat a fost efectdain Centrul de Cercetare
pentru Arhitecturi Avansate de Procesare a Infgiena(Advanced Computer
Architecture and Processing Systems — ACARp://acaps.ulbsibiu.)jaal Universittii
“Lucian Blaga” din Sibiu, Romania, in perioada 2603011.

Multumesc coordonatorului mestiintific, domnul profesorLucian Vinan, pentru
incurajareasi ghidarea meaatre cariera doctoral Coordonaresstiintifica, sfaturile,
corectirile riguroase, comentariile constructige suportul d4u necondionat au fost
esemiale pentru succesul meu, #ndin perioada cand eram doar student.

Multumiri, de asemenea, domnului profesbneo Ungererde la Universitatea din
Augsburg din Germania pentrd eni-a permis % fac parte din echipa sa de cercetare
timp de cinci luni, ca stagiu de pegige In stiinatate a doctoratului meu. Perioada din
Augsburg a fost pliin de inspirge. Am cgtigat mulé experiem si am ohinut sfaturi
folositoare.

In timpul doctoratului am avut jterea & lucrez cu prietenu$i colegul meu,Horia
Calborean As dori si 1i mullumesc pentru buna colaboragiepentru obserugle sale
valoroase.

As dori si multumesc, de asemenea, tuturor membrilor Catedrei aleuldtoare, in
special domnului confergar univ. dr. ing.Remus Braddomnului confergmar univ. dr.

ing. Adrian Floreasi domnului asistent univ. dr. indirpad Gellért A fost o plicere &

lucram impreud.

Le sunt profund recuno#or si domnului profesoNicolae Tapus si echipei de cercetare
de la Universitatea Politehnica din BuaireRomania. A dori si mukumesc n special
domnului conferetiar univ. dr. ingEmil Slusansch§i domnului asistent uniMlexandru
Heriganu pentru ajutorul oferit in exploatarea sistemulostnu HPCsi pentru @ mi-au
permissi m-au ajutat & okin o parte din rezultatele experimentale pe supeutstorul
de la universitatea dumnealor.

In plus, mulumesc celorlai co-autorisi colegi, Shahriar Mahbul{masteratyi Andreea
Gancea(licenia), cu care de asemenea am lucrat.

Vreau 4 Tmi exprim sincergi profunda recunginta familiei melesi Nicoletej pentru
sprijinul si intelegerea oferite.

Aceasit lucrare a fost stimuti de contractul financiar POSDRU 770@resterea rolului studiilor
doctoralesi a competitivififii doctoranzilor intr-o Europ unitz cofinarrat din Fondul Social European
prin Programul Operdonal Sectorial Dezvoltarea Resurselor Umane 200@13.

Sibiu, Septembrie 2011
Ciprian Radu
http://webspace.ulbsibiu.ro/ciprian.radu/

Rezumat

in zilele noastre, tendjele tehnologice au determinat arhitecturile de uwlatoare %
ajung la ga-numitulpower wall Datori& continuei migorari a tranzistorilor, densitatea
de putere pe centimetrdtpat a ajuns la limita superigaDin aceast cauz, arhitegii de
calculatoare au haat s inceteze Tmbuitatirea performatei designurilor acestora prin
intermediul scairii frecvenei. In loc de aceasta, mai multe procesoare swasiafe pe
acelai chip. Sistemelemulticore si manycoreofera o performagi crescui fata de
arhitecturile cu un singucore (nucleu de procesare), prin efectuarea de proeesar
paraleii. De asemenea, arhitecturile de calculator specgEntru aplicgi imbunitatesc
performana prin utilizarea de procesoare eterogene in lceldr omogene. Evident,
astfel de arhitecturi trebuiea die interconectate pentru a comunica. Potrivitiuna
HIPEAC [1], in momentul de fa comunicarea defigee performata. Reelele de
interconectare au o foarte mare impotfiaCele bazate pe magistrale transmisie (bus)
nu sunt potrivite pentru sistemetrilticoresi manycorepentru @ ele nu scaleaz?2].

Dupa anul 2000, reele interconectate pehip, numite arhitecturiNetwork-on-
Chip (NoC), au fost propuse drept o alternatiezabik pentru reelele bus. Relele NoC
au avantaje importante cum ar fi modularitageacalabilitatea, dar sunt extrem de
limitate Tn resurse. Ca urmare, existulte probleme de cercetare in domeniul NoC [3].

Maparea apliaglor pe arhitecturi de tipuNetwork-on-Chipeste una dintre cele
mai oneroase probleme (NP comp)etin aceadt zori de cercetare. De vreme ce o
abordare exhaustiveste nefezali] pentru aceastprobleni sunt folosii algoritmi
euristici. Scopul acestei teze esteeyvaluezei sa optimizeze algoritmi (mono-obiectiv
multi-obiectiv) pentru maparea apligdor pe arhitecturi de tipul Network-on-Chip

Primul obiectiv al acestei teze este s prezinte stadiul actual al algoritmilor
proiectai pentru problema mapi aplicgiilor pe arhitecturi Network-on-Chip. Apoi,
propunem de asemenea o taxonomie pentriiadgoritmi.

Zona de cercetare a arhitecturiletwork-on-Chipeste relativ nou Ca atare,
unelte puternicgi mature sunt Incasteptate. Din catgtim, la aceadtdat nu exisi un
cadru unitaropen source(gratuit) pentru evaluareg optimizarea algoritmilor pentru
maparea apligalor pe arhitecturi de tipuNetwork-on-ChipCel de al doilea obiectiv al
nostru este aproiecim un cadru comun pentru evaluarggaoptimizarea algoritmilor
pentru diferite majri pe arhitecturi multiple de tipiletwork-on-Chip

Al treilea obiectiv esteasoptimizaim si sa adapim un algoritm de tipuSimulated
Annealingpentru maparea apligidor pe NoCuri, folosind cunginte de domeniu.

Al patrulea obiectiv constin evaluaresgi optimizarea (folosind cuntinte de
domeniu) algoritmilor evolutivi pentru maparea muolbbiectiv a aplicgilor pe NoCuri.

In cele din urm, ne propunemaisefectdim o explorare automagt ghidas de
aplicgie, a spaului arhitectural pentru Sistemen Chip Aceasta implig sisteme
specifice aplicgilor, cu procesoare eterogene, utilizand @aeNoC parametrizabil

Aceasi tezi aduce contribgi originale Tn optimizarea sistemelor de tipul
Network-on-Chip Contribuim cu unelte pentru simulage benchmarking Optimizim
algoritmi pentru problema mapi aplicaiilor pe arhitecturi NoC. De asemenea,
propunem o metadde explorare automgtghidat de aplicéie, a spéului arhitectural
pentru Sistemen Chip

“Lucian Blaga” University of Sibiu
*Hermann Oberth” Engineering Faculty
Computer Engineering Department

Optimized Algorithms for
Network-on-Chip Application
Mapping

PhD Thesis

Author:
Ciprian RADU, MSc

PhD Supervisor:
Professor Lucian N. Vian, PhD

SIBIU, September 2011

Acknowledgments

The work presented in this PhD Thesis has beemedaout in the Advanced Computer
Architecture and Processing Systems (ACAPS) rekdalr fittp://acaps.ulbsibiu.joat
“Lucian Blaga” University of Sibiu, Romania, duritige years 2008 — 2011.

| thank my PhD supervisor, Profesdarcian Virran, for encouraging and guiding me
towards the Doctoral degree. His scientific coaation, his advices, his thorough
reviews, his constructive comments and his genesupport were essential for my
success, starting from the period when | was jostralergraduate student.

Grateful acknowledgements go also to ProfesBoeo Ungererfrom University of
Augsburg, Germany, for kindly allowing me to be tpaf his research team for five
months, as my PhD external research stage. My ndsestage in Augsburg was
inspiring. | gained a lot of experience and obtdigeod pieces of advice.

During my PhD work, | had the pleasure to work witly friend and colleagud{oria
Calborean | would like to thank him for the good collabacst we had and for his
valuable observations.

| would also like to thank to all the members frailme Computer Engineering
Department, especially to Associate Professor by. Remus BradAssociate Professor
Dr. Ing. Adrian Floreaand to Assistant Professor Dr. Ifypad Gellért It has been my
pleasure working with them.

My deep gratitude goes as well to Profegdmolae 7apus and to his research staff from
Politehnica University of Bucharest, Romania. | Vblike to thank especially to
Associate Professor Dr. IngEmil Slusanschiand to Assistant Professdtexandru
Herisanu for helping me with our HPC system and for allogvend helping me do part
of my experimental results on their university sgpenputer.

In addition, | thank to all the other co-authorgl amlleaguesshahriar Mahbub MSc
andAndreea GanceaSc, with whom | have also worked.

| want to express my sincere and deep gratitudaydamily and toNicoletg for their
support and understanding.

This work was supported by POSDRU financing contPi@SDRU 7706.

Sibiu, September 2011
Ciprian Radu
http://webspace.ulbsibiu.ro/ciprian.radu/

Author’s Papers

Ciprian Radu, Lucian Virntan,Domain-Knowledge Optimized Simulated Annealing\fetwork-
on-Chip Application MappingSubmitted to an Elsevier journal, September 2011.

Ciprian Radu, Shahriar Mahbub, Lucian Man, Developing Domain-Knowledge Evolutionary
Algorithms for Network-on-Chip Application Mappini review (since July 25 2011) at
Journal of Systems Architecturén{pact Factor: 0.667;5-Year Impact Factor: 0.769,
July 2011.

Ciprian Radu, Lucian Vinan, UNIMAP: UNIFIED FRAMEWORK FOR NETWORK-ON-CHIP
APPLICATION MAPPING RESEARCHA\cta Universitatis Cibiniensis — Technical Series
"Lucian Blaga" University of Sibiu, Romania, ISSN8B-7149, May 2011, Sibiu, Romania.

Ciprian Radu, Lucian Vinan, Optimized Simulated Annealing for Network-on-Chjgplcation
Mapping Proceedings of the T8nternational Conference on Control Systems antchiiter
Science CSCS-18, Politehnica Press, pp. 452-459, ISSN 2066-4451,- 27 May 2011,
Bucharest, Romania.

Ciprian Radu, Lucian Virtan, Towards a Unified Framework for the Evaluation and
Optimization of NoC Application Mapping AlgorithnSixth International Summer School on
Advanced Computer Architecture and Compilation fambedded Systems (ACACES),
Academic Press, Ghent, Belgium, pp. 163-166, ISBR8-90-382-1631-7, July 14, 2010,
Terrassa (Barcelona), Spain.

Ciprian Radu and Lucian Vigan, Optimizing application mapping algorithms for Notbsough

a unified frameworkin Proceedings of the 9-th IEEE RoEduNet Inteéomati Conference, Sibiu,
Romania, pp. 259 - 264, ISBN 978-1-4244-7335-92843une 2010. IEEE Computer Society.
IndexedIEEE, ISI, Scopus

Ciprian Radu, Horia Calborean, Adrian Florea, Arpad Gellertciam Vintan, Exploring some
multicore research opportunities. A first attemgiifth International Summer School on
Advanced Computer Architecture and Compilation fembedded Systems (ACACES),
Academic Press, Ghent, Belgium, pp. 151-154, |ISB&-90-382-1467-2, July 2009, Terrassa
(Barcelona), Spain.

Adrian FloreaCiprian Radu, Horia Calborean, Adrian Crapciu, Arpad Gellerticlan Vinan,
Understanding and Predicting Unbiased Branches en&al-Purpose Application®Buletinul
Institutului Politehnic lasi, Tome LIl (LVII), fas 1-4, Section IV, Automation Control and
Computer Science Section, pp. 97-112, ISSN 122®.216h. Asachi" Technical University,
2007, 1ai, Romania. Indexedentralblatt MATH

Adrian FloreaCiprian Radu, Horia Calborean, Adrian Crapciu, Arpad Gellemticlan Vinan,
Designing an Advanced Simulator for Unbiased BrasthPrediction Proceedings of 9th
International Symposium on Automatic Control andmpater Science, ISSN 1843-665X,
November 2007, k& Romania.

Ciprian Radu, Horia Calborean, Adrian Crapciu, Arpad Gellergridan FloreaAn Interactive
Graphical Trace-Driven Simulator for Teaching BrémPrediction in Computer Architectyre
The 6th EUROSIM Congress on Modelling and SimulgtiEUROSIM 2007, ISBN 978-3-
901608-32-2, 9-13 September 2007, Ljubljana, Slavéspecial session:Education in
Simulation / Simulation in Educatioh |

Contents

1 INTRODUGCTION. .ot iiit et eee e et e e et e et e e e et et eaa e s e e s seaa e s eaaessaaesebaessssansssrans 1

2 NETWORK-ON-CHIP ARCHITECTURES oot ea e rea e 2
2.1 DEFINITION AND ORIGINS ... ituittietietteestetiestietensesteestsesassestassttesteetersnseteesttesterrsnsssaeesnne 2
2.2 (O o YN0 = S N (o TSRS 5
2.3 TERMINOLOGY AND FUNDAMENTALS ..ettuiittiite it ettt eetteestetteetsesassstessansesneestsesneestsranersnerensess 6

2.3.1 Main Components
2.3.2 Topologies

2.3.3 ROULEN ATCHILECIUIE ...uviiiieieieieeee et s+ e et r e e e e e e e e e e s e e st teeeeeaeee e s s nnnnnnsnenees
2.3.4 Routing Algorithms.............ccceecvvvvvnnee
2.3.5 Switching Mechanisms
2.4 COMMON TOPOLOGIES ANDROUTING PROTOCOLSuuuiiiiiiiiinieeeeetiin e e eeeiiinsneeeeenennnnseeaeeeens 16
25 RESEARCHPROBLEMS.ccittttte ettt te e s sttt e e skttt e s aamee e e ek be et e e e sttt e e e e bbr e e e e e aasneeeeaanneeeeas 17
2.6 SUMMARY ..ottt e e e e e e e ettt e e e s san e e e e e e e e e e et e e e e e e et e e e een e e eeaeeeens 18
3 NETWORK-ON-CHIP APPLICATION MAPPINGccciiiitt ittt 19
3.1 THE NETWORK-ON-CHIP APPLICATION MAPPINGPROBLEM.....cittttiiieiiiiiiiiine et ee s 19
3.1.1 Application Mapping and Routing Problemsccccooviriiiiiiiiic e,
3.1.2 Application Mapping and Scheduling Problems
3.1.3 Scheduling Algorithms for Network-on-Chip Archit@esccccceeiiiiiiiiiiiiiiieiein 24
3.2 TAXONOMY FOR THEAPPLICATION MAPPINGALGORITHMS.ciiiiiiiiieeieeeiiine e eeiiieeeeeeeininanns 27
3.3 MAPPINGALGORITHMS FORNETWORK-ON-CHIP ARCHITECTUREScctttieeeeeisisineirnnereeeeeeeeenens 28
3.4 SUMMARY .ttt ettt ettt e et e e e e ettt e e e e eeeeeat e s e e e e e eeaa e e e e ee et e e e e ee bbb e e e e e eenn e e e eetenneaeeereaan 36
4 DESIGNING A UNIFIED FRAMEWORK FOR THE EVALUATION AN D OPTIMIZATION
OF NOC APPLICATION MAPPING ALGORITHMSooiiiiiiis it 37
4.1 RELATED WORK. ... ccteetteeee et ittt e e e e s et e e e e e s e a et e et e e e e e e s e e snnmn e e e e e aeenens 37
4.1.1 NoC Designs with Topologies other than 2D MeSh.ue....ccooviiiiiiiiiiiiiiee e 38
4.1.2 Network Simulation for Application Mapping Algoritis’ Evaluation................ccccevvvvvinnne 39
4.2 THE UNIFIED FRAMEWORK DESIGN.....ceiiiiiiiiiiiiitrieee e eeeeses e ereeae s e s e ssnnnrnreeeeeeneeenen e 39
4.2.1 Model for Real Applications’ Communication Patterns...........cccuvvvvvviiiiiiiiinieneeeeeeenn, 41
4.2.2 Model for the Processor Elements’ EXECULION. ccceeee.iiiiiieiiiiiiiiieiiccceev 45
4.2.3 An Interface for Representing the Inputs Used kyuhified Framework.......................... 46
4.2.4 The Scheduling MOUIEccoieieiii e o et eeaeae e e s s s e ssereraeeeeeaeesseasnsenrarereeeeens 49
4.25 The Mapper MOUUIEccce ettt e e e ee e e e e e e s e s ennnnnees 50
4.3 THE DEVELOPEDNETWORK-ON-CHIP SIMULATORuiiiiiiiiaeeaeeeitins e eeeeiiiaseeeeettineeeeeeeennnnns 51
4.3.1 The ns-3 Network Simulation FrameworkKccccccciooiiiiiiiiice 51
4.3.2 The NS-3 NOC ArChItECIUMEceeee i eeeeeetee e e e e e e e e e s aneeeeeaeeas 53
4.3.3 The PaCKet FOIMALuuiiiiiiiiee ettt et e e e e e ae e e e e e e s s nnnaeeaeeees 54
4.3.4 NetWOrk TOPOIOGIEScoiiiiieirieiiitcie et ee e e e e e e aaaaaaeaeeaaeeaanes 56
e TR T o Lo 101 = N o] 1) (= Tox (1] =SSP 57
4.3.6 ROULING AlGOItNMIS ...uuuiiiii it e e e e e e e e e et e e et e e e e ae e aeeaesbanerana s 60
4.3.7 SWILChING TECANIQUESueiiiii i sttt e ea e e e e eeas 62
O TR T I = 1 o = =1 0 SR 63
4.3.9 Network Traffic GENEIALOrccco e e e e 64
4.3.10 Power Consumption and Area EStimation.........ccccoveeeiiiiiiiviivicieie s 67
4.3.11 EXPerimental RESUILSuuuuuiiii it e e e e e e e e e e e aaaaeeaeeeeaaeaeeene 70
4.4 SUMMARY .ottt ettt ettt e ettt e e e e ettt e e e e ee ettt e s e e e e e eeaa s e e e e e e et e e e e e e bbb e e e e e eean e e e ae et aeaeeerraan 74
5 BENGCHMARKS ...ttt ettt ettt e ekttt e e e e ettt e e e e aase et e e e e nbeee e e be et aeeeannbeeaeesnnbeeeaas 75
51 EMBEDDED SYSTEM SYNTHESISBENCHMARKS SUITE (E3S)cccoiiiiiiiiiieeeivivi e v 75

5.1.1 Automotive/industrial APPlICAtION............iceeeerir e 76

Contents

5.1.2 Consumer APPIICALIONceeiie it e e e e e e e e e e e e et e e e 77
5.1.3 Networking AppPlCAtiONuuiiiiiiiiii e e e e e ee e 78
5.1.4 Office Automation ApPPlICALIONuuuiiiiiieeeeeie e e e e eeeae e 79
5.1.5 Telecommunication APPHCAtIONc.cviiiceeece e e e e e 79
5.2 AUDIO VIDEO BENCHMARKSctttititiitiieasssiasninteeeeereeeeeesessnnnnneesereeeeeesesnssnnnnnneneeeneeenesd 08
5.2.1 MultiMedia SYStEM (MMS)uuiiiiiiiiiie et e e e e e e e e e e e aaaaaeaeeeeeeaeeenn 81
5.2.2 PiCture-iN-PiCture (PIP)uuuiiiiiiiiiicmeree ettt s s ss s s e e e e e e e aaseeesseeeaeeeaeessssennrennnnnns 82
5.2.3 MPEG-4 DECOUEN ...ttt ettt cmemee ettt s ettt e et e e s st e e s e bn e e e s e e e e e eanes 82
5.2.4 Multi-Windowed Displayer (MWD).........c..uuurmmenririiiierieeeeeeas s ssseeieieeeeeeeessensnnsssnnnees 83
5.2.5 Video Object Plane Decoder (VOPD)uommmmmeeeeesiiiiisininieereeeseaeesssssensnnseneeeesees 83
5.2.6 H.264 DECOUEN......ueiiiiiiiiiie ettt eeeeec bttt ettt e et e e e s snnee e s e bt e e e e e nnbne e e e a 84
5.3 APPLICATION CHARACTERIZATION GRAPHS.cvttitttttiiiiiiaassae e s e e eeeeeeeteeeeeeseaeeeneesesrnnnenanns 85
5.4 SUMMARY .ttt ettt e e et e s et e e e e e e s e e et et e e e e e e e e et e e e e e e n e e eeeeeaes 89
6 OPTIMIZED SIMULATED ANNEALING FOR NETWORK-ON-CHIP A PPLICATION
MAPPING. A DOMAIN-KNOWLEDGE APPROACHc.ccviiis ittt 90
6.1 RELATED WORK. ...ttt sttt ettt et ae bttt s e e e e e e e e e e e e eeeeeeeeesesbnnnnnnnennenan s
6.2 TTHE ALGORITHM ..ttt ettt ettt e e e s e e e e e e e e e e e et et e et ae e s s be bbb b s re e e e e e e e e e eeeas
6.2.1 Mapping CoStccevvveeeeiiiiiiiiieieeee
6.2.2 Annealing Schedule
6.2.3 Number of Iterations per Temperature LEVElccceeuvvviiiiiiiiiiiiniiieeeeveveeeeeeeians 94
02 Y Xolo7=T o) = 1 Tod = I8 w0 o 1 o o S
6.2.5 PDF-based Swapping........ccccceeeeeeennn.
6.2.6 Stopping Condition..........cccceeeerenennn.
B.2.7 SUIMHTIAIY .ottt e s e et e e et e et e ettt e e e e e ae e e e e e et eee et eete b ebb b sa e s e e s e e e e aaaaaeeeeeetaeneeeeesesbnnrrnnes
6.3 SIMULATION METHODOLOGY

6.4 EXPERIMENTAL RESULTS
6.5 SUMMARY

7 DESIGNING DOMAIN-KNOWLEDGE EVOLUTIONARY ALGORITHMS FOR

NETWORK-ON-CHIP APPLICATION MAPPINGcootiiiiiit it eeae 108
7.1 L I =T YA (0] = TR 109
7.2 ENERGY- AND PERFORMANCEAWARE GENETIC ALGORITHM ...uviiiinieiiieeeiiieeeeieeseneesneeeennns d a1l
7.3 ELITIST EVOLUTIONARY STRATEGY .ituiitttittiiiiieitiieteiteetnetsteesstesssssntesnseeessiestaeesesrnerennees 111
7.4 DEVELOPINGPROBLEM KNOWLEDGE CROSSOVERScuuiittiiiitteeereesstteeeetneesstinesssnneessnans 111

7.4.1 NoC Position Based Crossover (NPB) ... 111

7.4.2 Mapping Similarity CroSSOVEN (MS) e e seeseeseeeeeesaeaetsessresssssinnnnnns 112
7.5 MUTATION OPERATORS. ...uuuiittuettttaeettteeettiaeesttaeestteesetteessstneessteesstareestneerstrerstniereniasens 114
7.6 MULTI-OBJIECTIVEOPTIMIZATION .. cttteeitieettt ettt eeestsesstteesestesssnseessnesssnteresneeresanesssnaesenns 114
7.7 SIMULATION IMETHODOLOGY ..tuituituiitueeetiettettnestsesaesssessesssnessssestesssnessersnersnsranessniesnerans 115
7.8 EXPERIMENTAL RESULTS. . ccttiiiiiiiettiee et e et e et e e e e e e saae s e st e e eeb e e satasssbeessbnsessteeesrnnss 116
7.9 S Y LY 1 2 3 2 123

8 APPLICATION DRIVEN AUTOMATIC DESIGN SPACE EXPLORATI ON FOR SYSTEM-

ON-CHIP ARCHITECTURES ... ittt e et e s e e e st b s st e s e e e abans 125
8.1 I = YA = LR 125
8.2 FRAMEWORK FORAUTOMATIC DESIGN SPACE EXPLORATION. ...uivuuiiiiiieiineeiieieeeeneeteeenneennnns 712
8.3 DESIGN SPACE EXPLORATION WORKFLOW. .. .cuuiitniiitietiiieieeitieeteeeaeetnessseesansssnessnnssnnerssennns 129
8.4 SIMULATION METHODOLOGY ..vtutiiittetttiieestnieeestesesnessstesssssesestesestaeessnesssnaessrneessneessnn. 132
8.5 EXPERIMENT AL RESULTS. . .ittiiiiiiieiii ettt e et ee et e e s e eeesaae s e st esseb e e satesssbeessbnsesstaeaesrnnss 133
8.6 S Y LY 1 2 3 2 141

9 CONCLUSIONS AND FURTHER WORK ...ttt seaa e 142

O I] @ S Y AN = A PRSP 146

11 REFERENCES.. ...t e 152

“You see things; and you say, ‘Why?’
But | dream things that never were; and | say, ‘\Why?"”

George Bernard Shaw

1 Introduction

In the current days, the technology trends detexthoomputer architectures to reach the
so called power wall. Due to continuously shrinkingnsistors, the power density per
square centimeter reached the upper limit. Becali$es, computer architects decided to
stop improving the performance of their designsnisans of frequency scaling. Rather
than this, more processors are placed on the shipeMulticore and manycore systems
provide better performance than single core archites, by performing parallel
processing. Also, application specific computehdaectures yield increased performance
by employing heterogeneous processors instead mbgenous processors. Obviously,
such architectures must be interconnected in otdecommunicate. According to
HIPEAC’s vision [1], nowadays communication definesrformance. Interconnection
networks are of high importance. Traditional busduhnetworks are not suitable for
multicores and manycores, because they do not &jale

After year 2000 on chip interconnection networdaled Network-on-Chip (NoC)
architectures have been proposed as a feasiblmatltee to bus networks. NoCs have
important advantages like modularity and scalabiitt, they are also extremely resource
limited. As such, there are many outstanding reseparoblems in the NoC field [3].

Network-on-Chip application mapping is one of thmst onerous, NP-hard,
problems in this area of research. Since an exivauapproach is infeasible, heuristic
algorithms are used to address this probl€he scope of this thesis is to evaluate and
optimize Network-on-Chip application mapping alglems (using single-objective and
multi-objective approaches)

The first objective of this thesis is to realizes@ate of the art regarding the
algorithms designed for the Network-on-Chip applaa mapping problem. Then we
also propose a taxonomy for these algorithms.

The Network-on-Chip research field is relativelgwn Therefore powerful and
mature tools are still expected. To the best of kmowledge, there is not currently an
open source unified framework for the evaluatiod aptimization of Network-on-Chip
application mapping algorithms. Therefore, our secwmbjective is to design a
framework that uses a common frame for evaluatiry@ptimizing different state of the
art mapping algorithms on multiple NoC architecture

The third objective of this work is to adapt angtimize a general Simulated
Annealing technique, for NoC application mappinging domain-knowledge.

Our forth objective is to evaluate and optimizesiig domain-knowledge)
evolutionary algorithms, for Network-on-Chip applion mapping, through a multi-
objective approach.

Finally, we aim to perform an application drivemt@matic design space
exploration of System-on-Chip designs. This inveleatire application specific systems,
with heterogeneous processors, using a NoC asaneection.

This thesis brings original contributions in thetiNork-on-Chip research field.
We contribute with tools for simulating and bencinkireg NoC designs. We optimize
algorithms for the NoC application mapping probléie also propose an application
driven automatic design space exploration methadSgstem-on-Chip architectures.

“Well I am certainly wiser than this man. It is grtoo likely that neither of us has any

knowledge to boast of; but he thinks that he kremsething which he does not know,

whereas | am quite conscious of my ignorance. Atrate it seems that | am wiser than
he is to this small extent, that | do not thinktthienow what | do not know.”

Socrates

2 Network-on-Chip Architectures

In this chapter we do a brief presentation of Nekaan-Chip (NoC) architectures. We
start be defining what a Network-on-Chip is and wéwe its origins. We then continue
with the most important characteristics of NetweoksChip. Next we detail the
fundamental NoC components and we introduce the mgsortant terms used in this
research field.

We conclude our introduction into the field of N@tchitectures by presenting
what are the main Network-on-Chip research problems

2.1 Definition and Origins

Since the invention of the integrated circuit irb8 Moore’s law [4] describes a trend in
Computer Engineering that is still nowadays. Forertban half a century, the number of
transistors that can be placed onto a single coybleés approximately every two years
(initially it was one year, than Moore readapteslléaw) [5]. In the early beginnings, a
computer system occupied an entire room. As tedgyoévolved, in the 70s the Large
Scale Integration (LSI) era began and the compuwters rack-level systems. In the 80s,
Very Large Scale Integration (VLSI) era began. Thisant a system can be placed on a
single board. Ten years later, in the 90s, we werdhip-level systems (ULSI — Ultra
Large Scale Integration). Nowadays, billion tratwsis can be integrated on a single die.
A chip is an entire system and so, the term Sysiefhip (SoC) was coined. Systems-
on-Chip make use of parallel processing at alllevastruction Level Parallelism (ILP),
Memory Level Parallelism (MLP) and Thread Leveldatism (TLP) [6], [7], [8], [9].
We researched these levels of parallelism prewohglfocusing on branch prediction
[10], [11], [12] and multicore architectures [1Bl4]. SoCs are feasible for a wide range
of applications. However, they determine the aeth# to focus on the complex aspects
of the communication architecture.

The continuously growing number of transistors gleip leads to a bigger and
bigger gap between logic gate delays and wire delay]. As compared with the gate
delays, the global interconnection wires used kypécal bus interconnection network
determine significantly higher delays.

Systems-on-Chip also incur problems related to dexity, design flexibility and
productivity and system synchronization. Achievigigbal synchronization is getting
harder and harder as technology advances and pbgul sncreases.

Currently, computer architects face with the diuftqproblem called Power Wall.
As it may be seen in the following figure, the powensity grows exponentially with the
clock frequency.

Network-on-Chip Architectures

Scaling clock speed (business as usual) will not work
10000

Nuclear ep
Reactor

3086 Hot Plate —» ¢

004 & L2
8008 808528‘; 386 ¥ Pentium®
&
080 . 486 Source: Patrick

.
o
E
Q
E
=,
=
7
c
O
(=]
=
7]
=
=]
o

1970 1980 1990 2000

Year
Fig. 1 Power Wall (image adapted from: CS 194 Parbdl Programming Why Program for
Parallelism?, Katherine Yelick, Berkeley)

The Power Wall is what mainly determined the appees of multicore and manycore
architectures [16]. Parallel programming is neeieexploit multicores. Obviously, such
architectures require scalable interconnection agtsv It is well-known that the bus is
not a scalable interconnection network [2].

The gap between on-chip and off-chip communicaioimcreasing. On-chip, we
have greater bandwidth and shorter latencies hatpbwer budget is smaller. Besides
scalability, on-chip communication also meafigxibility, simplicity and efficiency
Flexibility is achieved by no longer using applioatspecific wiring (like buses do).
Simplicity refers to modular, structured and regutesign. Efficiency means the
interconnection’s ability to share global wiresveten different communication flows.
Communication is a performance bottleneck. Becadshis, the design shifts from a
processing-centric to a communication-centric apgino

Simply stated, aNetwork-on-Chip (NoC) is a communication network that is
used on a single chip. A Network-on-Chip consistsaonumber of interconnected
heterogeneous devices (e.g. general or speciabpairprocessors, embedded memories,
application specific components, mixed-signaD lEores) where communication is
achieved by sending packets over a scalabterconnection network. No global
wiring is used by a NoC. Wiring resources are ghaethe communicating devices. The
idea appeared in the 90s but it started to be resed only from year 2000. Some of the
first papers introducing the NoC concept are [118], [19], [20], [21], [22] and [23].

The limitations of bus based interconnects arasgmnted in [17] and an on-chip,
packet-switched, interconnection network is proposehe authors of [18] propose a
NoC design methodology and introduce the honeycstmizture. In this design, each IP
core is placed on a hexagonal node connectedde #witches. The switches are directly
connected to their nearest neighbors.

The Network-on-Chip architecture was introduce{ll®] as a better alternative to
global wiring structures, used to interconnectat#éht Intellectual Property (IP) blocks
The NoC in [19] has eegular tile-based architecture that offers several achge’ over

L An IP can be: a CPU core, a DSP core, a videoggsar etc.

Network-on-Chip Architectures

traditional interconnection networks. The structuneetwork wiring allows a better
control of the electrical parameters of the netwgovkires. This provides the opportunity
to obtain reduced power consumption. Another adgetof NoCs is given by
modularity and standard network interfaces, whichovige re-usability and
interoperability of the modules. Wiring resources shared by the communicating IPs:
when one module is not communicating, other modcgesstill use the wiring resources
used by the (now) idle module. No global wiringused by a Network-on-Chip. The IPs
communicate by sending packets to one another.

MicroNetwork [20] is a specific NoC architectureattwas integrated into SoCs.
The MicroNetwork designers argue that NoCs are ftihmlamental communication
architectures for complex System-on-Chip designs.

A packet-switched router architecture for NoCsrisspnted in [21]. A two-phase
design methodology for a MxN 2D mesh NoC is pre=sgnh [22]. The first phase
derives a concrete architecture from a general dodlate. The second phase maps the
application onto the concrete architecture to farooncrete product.

NoC is presented as a new paradigm in [23]. Thevbidt-on-Chip characteristics
are outlined. The authors introduce a protocol kstawade of threenetwork layers
physical (wiring), architecture and controllcomposed of: data link (flits), network
(routing of packets), transport (messages into @iscland vice-versa)) ansbftware
(application and system).

The Network-on-Chip research field is relativelysnand of high importance. In
HIPEAC'’s vision [1], nowadaysommunication defines performan€é@ommunication is
essential at three levels: (1) between a proceasdr its memory, (2) between a
multicore’s different processors and (3) betweeocessing systems and input/output
devices. At the processor — memory level, the impacommunication on performance
is basically controlled through cache hierarchigsthe other two levels, it is the role of
the interconnection network to deal with the comioation cost so that performance is
less affected. More precisely, more and more psmssare integrated on the same chip.
Sincepower defines performancenulticores are now the solution for achievinghag
performance. In this context, traditional buses,icWwhallow the processors to
communicate, no longer suffice. Networks-on-Chipviie the scalability that buses
lack. Therefore, NoCs will have an increasing int@oce in the following years. The
growing interest in this area of research is se@seut in HIPEAC’s vision [1]:
interconnects is one of the clusters on which HiEEAoadmap is built.

A component-based hardware design methodologyisiened in the future [1].
This means that systems will be built from standaigsable components like memories,
cores and interconnection networks. This desighriggie applies however at multiple
levels. The level of abstraction increases progrelys Basic blocks (gates, registers,
ALUs etc.) make components (processors, NoCs efmjnponents are then used to
create different kinds of chips (CPUs, GPUs andrgp which in turn are used to obtain
systems that also are interconnected, leadingsiess of systems.

Obviously, the importance of interconnection netgdncreases as the number of
communicating components raises. For intra-chip roanication, the NoC is the
solution and this is due to at least one factoaladslity. As the number of cores
increases, the impact of memory bandwidth and megmatency becomes more and more
stringent. Networks-on-Chip help at controlling f@blems of memory bandwidth and

Network-on-Chip Architectures

latency. HoweverNoCs have a lot of issues that need solvifgy example, they still
require a lot of power and occupy large areas @tttip.

More precisely, research in the field of intercection networks is required by all
of HIPEAC'’s current research objectives: Designcepixploration (DSE), concurrent
programming models and auto-parallelization, desafjroptimized components, self-
adaptive systems and virtualization.

PerformingDesign Space Exploration (DSHE)r entire systems is currently a
challenge. Unified DSE frameworks, that include th&rconnection networks, are
estimated to be available only between years 2062820 [1]. HIPEAC Consortium
also estimates that the design space of intercesimelt be feasible for exploration only
around the year 2015. Only then, network trafficdels, benchmarks and realistic
performance/power models will be available for dwpdnterconnection networks.

Developing concurrent programming modelgequires network interface
mechanisms which efficiently support the cache oeiee protocols and the
communication between processors.

Electronic Design Automation (EDAéfers to a set of methods and tools that help
at improving the system’s design efficiency. EDAcludes (among others)
hardware/software modeling angartitioning and mapping applicationso Multi-
Processor System-on-Chip (MPSoC) architectureatéelto this is the mapping problem
for Network-on-Chip architectures). EDA has severahallenges related to
interconnection networks:

- full system simulation, including the interconneas;

- designing application-specific networks;

- designing reusable interconnection modules thronighface standards.

Creating interconnection network architectures Wwineduce power, latency and
integration area is a challenge ag#signing optimized componen®he interconnection
network may also be optimized by using dynamic powsnagement techniques.
Another goal is to design on-chip memory hierarghie

A challenge of self-adapting systemss to designfault tolerant network
architectures and protocols. The network trafficyratso be monitored and controlled.
Such data may be used by the run time system fieadaptation.

Network interconnection is important fairtualization as well, from the point of
view of system security and quality of service. Timetwork may be physically or
logically partitioned. A research challenge is tentify how network topologies and
routing algorithms can help at system partitioramgl isolation.

2.2 Characteristics

We enumerate next the most important Network-orpCtharacteristics: structured
wiring, modularity, scalability, reliability, databstraction, network modeling and
productivity.

The NoC allows its communication links to be reusdd application-specific
wiring is used. This approach increases the netwgdrformance by reducing its delays
and power consumption. The NoC is modular because made of several building
blocks. As compared to a bus interconnection, th€ Ras a scalable topology. The data
communicated is divided into messages. Messagesoanposed of packets with a well-
defined structure. Then, packets are further divideto flits and, flits into phits,

Network-on-Chip Architectures

according to the layered network modeling used. dda transferred through a NoC is
more reliable because the packets are verifiecefors. All the above imply a higher
NoC design productivity.

NoCs are very similar to general purpose netwdftis traditional parallel and
distributed computers). However, they are differentt least two ways: system cores
granularity and homogeneity [15]. While the generatworks are coarse grained and
homogenous, NoCs are rather fine grained and lggeemus. The NoC is placed on a
single chip along with its IP cores. It is much maonstrained by resources and it
usually interconnects different processors.

2.3 Terminology and Fundamentals

We present in this section the main components ét@vork-on-Chip architecture. We
also briefly present and classify the network toga#s, routing and switching
algorithms. We focus only on the ones which aretneosnmon in the NoC research
field. During this section we also define some loé tmost used terms in networks
domain. We note that a glossary is available aetiteof this thesis, in Chapter 10.

2.3.1 Main Components

The following figure presents a typical Network-Ghip architecture. The NoC is placed
on a single chip, which is divided into reguldes. A tile is a part of the chip that
contains an IP core and a network router. Thadikdso called a Network-on-Chippde

As it may be seen below, the IP cores are usualigrogeneous in such design because,
generally speaking, applications are heterogeneds. can have general purpose
processors (CPU 1, 2, 3, 4), application specifies (Application Specific Integrated
Circuits, Digital Signal Processors etc.), memorydoies, input/output devices and so
on. Obviously, the NoC tiles can also be irregulat,of different sizes.

outer

CPU 1

crus | §. B [
DSP 1 —1TT] X
—n—n =

CPU 2

asic2 | Lf

. ‘.- -

hrieeentttt

ASIC 1 ‘ IIOL DSP 2

Fig. 2 NoC main components

In NoC terminology, an IP core is also calledPeocessing Element (PE)he PE
performs computation and communicates with othes B messageswhich are sent
through the communication network. The IP coreasnected with the network using a

Network-on-Chip Architectures

Network Adapter (NANA's purpose is to provide an interface betwdendores and the
network. It specifies how the communication sersiaee made available to any IP core
type. As it may be seen in the following figureetiNetwork Adapter separates
computation from communication.

The Network Adapter provides twi

interfaces: one for cores and another ¢ ¢

for the network. It handles the messag Core Interface

generated by the cores by breaking the S

into smaller units callepiackets A packet | \ooon adapter -T2
is the logical unit of information that it communication
transmitted trough a network route, usir Network Interface

routers The packet is made of th (N

following parts: a header, a data paylo. ¢

and a tail (or trailer). Thpacket headers
the front of the packet and contair._
information about the source and destination No@eso This helps the NoC to decide
the path of the packet (its route). The data payisathe second packet component. It
holds the data transmitted by the IP core acras®ItiC. Thepacket tailmarks the end of
the packet and it typically contains codes for lecttecking and correction (if possible).

A packet is made of flow control unitdlits). A flit is the minimum unit of
information that can be transferred across a linét aither accepted or rejected [24].
Each flit is made of one or more physical ungsi(s). The phit is the minimum size
datagram that can be transmitted in one link tretisa [15]. Usually a flit is equivalent
to a phit. This is also the case in this entirekv@ihelink is a set of wires and fibers that
carries an analog signal [24]. Transmitters anceivers are used to convert digital
signals to and, respectively, from analog signalsommunicatiorchannelis composed
of a transmitter, a link and, a receiver.

The router is the NoC component which drives the informatiough the
network. It uses aouting algorithmto determine which of the possible paths, from
source to destination, are used as routes and whbide is taken by each particular
packet. Buffers are used to store the flits uté touter can handle them. The router
contains aswitch that provides the means to route the informatidn.switching
mechanisndetermines how and when the data traverses itg’rdntNoC architectures
packet switchings used. That means messages are broken intaarsegjof packets and
that packets are individually routed. This is ommbtocircuit switchingwhere the entire
network path is reserved until the whole messagaismitted.

Networks-on-Chip use a four level OSI layering. eThop level is the
Application/Presentation leveHere, messages are injected by IP cores intdlti@ At
the Session/Transport levethe Network Adapter splits messages into packeasket
flits are then routed from their source node tartbestination at th&letwork level Flits
are divided into phits, which are communicated tiolinks at thd.ink/Data level

We present next some of the most common netwg&ldogies, a typical NoC
router architecture and some of the most knownmgund switching algorithms.

Fig. 3 The Network Adapter

2 According to [24], when data traverses its rosteassociated to a flow control mechanism. We have
however adopted the terminology from [3], where Hvdtching notion encapsulates the flow control
mechanism.

Network-on-Chip Architectures

2.3.2 Topologies

The network’s topology specifies how its nodes amgerconnected by links
(communication channels). Some of the most impompaoperties of a topology are the
nodedegree the topologydiameterand thebisection bandwidthThe node degree is the
number of channels entering and leaving each nblae.network diameter is the length
of the maximum shortest path between any two nadethe network. The bisection
bandwidth is the sum of the bandwidths of the murmset of channels that, if removed,
partition the network into two equal unconnectetlasenodes. From a topological point
of view, a network may be direct or indirect. Indmect networkeach node has two
functions. It produces or consumes packets antba acts as a switch. In andirect
network the node has only one of the two functions.

Next, based on [24] [25] [26], we briefly show tmeost common network
topologies. This is not by far an exhaustive cogeraf the network topologies space. We
start with topologies for direct networks and tiwemmove to indirect networks.

2.3.2.1Some of the Most Common Network Topologies

The most popular direct networks are cakeary d-cubenetworks. Such a network hlas
nodes in each of itd dimensions. Each two (horizontally or verticalBdjacent nodes
are interconnected. The edge nodes may have woamarlinks. In this category of
networks we encounter: the linear array, the rihg,mesh, the torus and the cube.

@

Fig. 4 From left to right: 2D mesh, 2D torus, cube

Mesh (array) topologies are also cal@dlimensional k-ary mestand torus topologies
are also calledl-dimensional k-ary torubut, they are also collectively calledeshes
The node degree is betwegand2d. The network diameter d{k - 1) For an evelk, the
bisection is k. For an odd, the bisection
is a little bigger.

A lot of different topologies may be
obtained from k-ary d-cube networks. Su:
an example is thieypercube
In geometry, the hypercube is the |
dimensional analogue of a square (n = 2)
a cube (n = 3). It is a closed and conv
geometrical figure that has the topologic
graph made of groups of opposite paral Fig. 5 hypercube (2-ary 4-cube)
line segments, equal in length, aligned and
perpendicular to each other [27]. The hypercubalse called am-cube The 4-cube is
called atesseractin networks domain, the hypercube is a 2-aryglyipnd-cube network.

Network-on-Chip Architectures

In k-ary d-cube networks the diameter increases$, whereN is the number
of nodes. However, fotree topologiesthe diameter increases only logarithmically
(2log, N for a tree with N leaves). The bisection is onéidary tree has degree three.

A tree topology has a root node. This node is coteteto a number of (descendant)
nodes, which may also be connected to a numbeesgfethdant nodes and so on until we
reach the leaf nodes (i.e. nodes with no descesiahtree in which every node (except
the leaves) has a fixed numbderof child nodes is called k-ary tree Trees may be
balancedor unbalancedA tree is called balanced when the distance feach leaf node
to the root is the same.

A major disadvantage of tree topologies is that, doy two nodes, there is a
single route between them. This means no faultdote is available. Also, removing a
single link from a tree bisects the network. Foesen reasondat-tree [26] topologies
have been proposed. In a fat-tree, a node’s forfirgkdto the parent node) has twice the
bandwidth of its backward link (to the child nodd).fat-tree may also be an indirect
network. In this situation, only the leaf node~
of the tree are network nodes whic 44 44
inject/receive packets. The rest of the noc o 1 o 1

(including the root) perform only at
switches. | > |

The root node of a tree topology ! 01 01
clearly a bottleneck in the network. Thi
problem may be solved by creating mo I W ¥ |

roots. Such a network is calledbatterfly. Fig. 6 The basic building block of a butterfly
This is an indirect network. Its basic buildin

block is a 2x2 switch that crosses one of each

pair of edges. Similar to meshes and tori, the fawi butterflies is callek-ary d-fly
[25]. The butterfly has a diameter lafg, N and a bisection dfi/2.

One of the most important indirect networks is ¢thessbar A N x M crossbar
directly connectsN inputs toM
outputs with no intermediate
network hops. This type o
network is also called @aon-
blocking network
The crossbar requires n _ _ . .
buffering. There is a direc inputs—SW'tC Bwitc pwitc switch
connection between any (inpu
output) pair of nodes. Howevel
its cost increases rapidly as tt
number of inputs and/or output —Ewitc witc witc witch
increases significantly. Ideally
it would be to have an entir I I Moutputsl I
network as a crossbar but, this Fig. 7 N x M crossbar
not possible because of its high cost. Otherwisg, @uter from a direct network
contains a crossbar.

Crossbars are also used at building other indimetwvorks. Such an example is
the Clos[25] network. This is a three-stage network inethéach stage is composed of a

—switc switc kwitc kwitch

Network-on-Chip Architectures

number of crossbars switches. A Clos is usuallyadtarized by a triplém,n,r), wherem

is the number of middle-stage switchess the number of input and output switches and
n is the number of inputs and outputs that eachtiapd output switch has. Thenput
switches aren x mcrossbars. The middle switches ane r crossbars and theoutput
switches aren x ncrossbars. The main advantage of the Clos netwsagk/en by its high
routing path diversity: for any traffic, there argpossible routes available. A (2,2,2) Clos
network is also called Benesnetwork.

Obviously, a lot of other network topologies existthe literature. For example,
the concentrated mes}28] is a mesh-like directed network where a rostrvices four
nodes. Thdlattened butterflyj29] is a variant of the butterfly network. It kiek the cost
of a Clos network, with a similar performance. ®hare also hybrid topologies and
irregular networks but, we confine to the most gapanes.

2.3.3 Router Architecture

We briefly present next a typical router architeettor Networks-on-Chip along with its
mode of operation.

Routing VvC Switch Routing Computation
module allocator allocator (RC)
Input VC state Outout Virtual Channel
Allocation (VA)
T p
Switch Allocation
(SA)
VC state
input [VC state] utout
port P — — | > po&
--.—I Switch Traversal
crossbar switch (ST)

Fig. 8 Typical router architecture (left) and router operation (right)

As shown in the above figure, the router data pathsists of buffers and a (crossbar)
switch. The input buffers store flits while theyeawaiting to be forwarded to the next
NoC node. When virtual channels are used, theremanéiple input buffers for each

physical channel so that flits can flow as if thare multiple virtual channels. When a flit
is ready to move, the (crossbar) switch connectsunt buffer to an appropriate output
channel. Three modules are used for controlling tlwer data path: a routing module, a
virtual channel (VC) allocator, and a switch alltmra These control modules determine

10

Network-on-Chip Architectures

the next hop (NoC node), the output virtual chanaell respectively when the switch is
available for each flit.

The router operation mode has four phases: Ro@mmputation (RC), Virtual
channel Allocation (VA), Switch Allocation (SA) an8witch Traversal (ST). These
phases often represent one to four pipeline stagesodern virtual channel routers.
When a head flit arrives at an input channel, thater stores it in the buffer for its
corresponding virtual channel and determines the hep for the packet (RC phase).
Knowing the next NoC node, the router then allogaa output virtual channel (VA
phase). Finally, the flit competes for the swit&@A(phase) and moves to the output port
(ST phase). Optionally, buffers for the output partay be used. If so, the flits will stay
in these buffers until the channel is ready to dnaib them. If output buffering is not
available, the flits will not be allowed to traverghe switch until the output channel is
available.

2.3.4 Routing Algorithms

In this section, we briefly present (based on [4] [26]) some of the most common

routing algorithms. A routing algorithm has the pose of establishing the path taken by
a packet, from where it was injected into the nekwdhe source node, up to its

destination node. Before presenting different raytialgorithms, we present the

taxonomy for routing protocols.

2.3.4.1Taxonomy for Routing Protocols

We adopt the routing protocols taxonomy from [2&fwonly a few minor observations.
It can be seen that routing mechanisms may beifidasbased on many factors.

Based on how many destinations a packet has, thmgomay beunicast(single
destination) omulticast(multiple destinations).

The routing decisions can be taken by a singlerothet. In this case the routing
is centralized When the routing path is determined at the sonozke, before the packet
is injected, we haveource routing The routing path may also be determined while the
packet travels from node to node. In such casesrdhting isdistributed Hybrids of
these three types of routing decisions are alscsilples and they are included in
multiphase routing

A routing algorithm may be implemented using a irayittable or a finite state
machine. Table lookup means searching for a roytatd into the routing table. Finite
state machine allows routing decisions to be tateantime.

The adaptivity criterion is the one that we arengoio focus on in this section.
Deterministic (non-adaptive) routingieans that the same path is chosen every time a
packet must be routed between the same (sourd@mates) node pairAdaptive routing
uses information about the network state and thusjay provide different paths at
different momentsOblivious routingis another type of routing adaptivity. It is not
presented in the cited taxonomy, but it is desdcriime[25]. It does not use information
about network’s state and it also does not providge same routing path every time.
Oblivious routing uses a stochastic mechanism terdene the path. For example, a
random algorithm that uniformly distributes theffimacross all of the available paths
implements an oblivious algorithr@blivious routingmay be seen as a hybrid between
deterministic and adaptive routing.

11

Network-on-Chip Architectures

Progressiveneseefers to how the channel is reserved in ordeotie a packet
forward. With progressiverouting a new channel is reserved at each newngut
operation by moving the packet header forw&adcktrackingrouting allows the packet
header to return, releasing the reserved channeacktracking protocol considers that it
is better to search for alternative paths thanad for a channel to become available. If
the channel is faulty, it will remain unavailabletili it is repaired. Potential paths are
searched in a depth-first manner by probing thevowdt with a header flit. When the
header cannot go forward, it returns to the lasjused channel, releases it, and it
continues its search from there.

Minimality is related to the length of the routing pathsmiimal (profitable)
routing always generates routing paths of minim@mgth. Nonminimal (misrouting)
means that the paths may be longer than the minimpath (for example, to avoid
network congestion).

Routing a packet can take into consideration athefavailable pathsg@mplete,
fully adaptive routingor just a subset of themdrtially adaptive.

2.3.4.2Dimension-Order Routing

Dimension-Order Routing (DOR) [25] is a determiisbuting protocol used for k-ary
d-cube networks (like meshes and tori). The digite destination address are seen as a
radixk d-digits number and they are used one at a timéréstdhe packet. Each digit is
used to select a node in a given dimension. DO&s8 a minimal routing algorithm.
Thus, at each step the shortest direction is s#leet torus may be traversed either from
left to right or from right to left and, respectiyefrom up to down or from down to up.

We find the preferred direction in each dimensigndomputing the relative
address for each digiof the source and destination addresses:

m =d, —s modk
k
A =m - o.m SE
k,othewise

The preferred direction for dimensiors then computed like:

k
0 { ofn|=X

sign(A,), otherwise

After computing the preferred direction vectoD € D,D,..D,), the packet will be

routed in one dimension at a time. It travels idiension until it reaches the same
coordinate like the destination (in that dimension)

Dimension-Order Routing is a very simple algoritimis used very much with
mesh and torus networks because it is easy to mgrieand because it is deadlock-free
(except when d = 1 — one dimension). DOR is alsoramal-path routing algorithm.

This algorithm is used for hypercubes as well. His tcase it is hamed-cube
routing. For bidimensional meshes or tori it has two va#sa XY and YX. With XY
routing the X (horizontal) direction is routed firdVith YX routing, the packet travels
first in vertical direction.

12

Network-on-Chip Architectures

2.3.4.3Destination-Tag Routing

Destination-Tag Routing is a deterministic algarntHike Dimension-Order Routing but
for k-ary n-fly butterflies. The destination addses viewed as am-digits radixk
number. This is the only information used to roatpacket. The source address is not
used for routing. Each digit of the destinationradd is used to select the output port at
each step of the route.

2.3.4.4Valiant Routing

This algorithm may be applied to any topology thas at least one path between each
pair of nodes dqonnected topology The principle is to route packets through an
intermediate node that is randomly chosen. Rouiiregpacket from the source to the
intermediate node and from the intermediate nodbdalestination can be done with any
routing algorithm. The random selection of the rnmtediate node makes Valiant’s
algorithm to be an oblivious routing mechanism. &ee of the randomly selected node,
this algorithm is able to balance the network |batter than a deterministic algorithm.
However, this algorithm is not minimal.

2.3.4.5Minimal Oblivious Routing

Such an algorithm tries to achieve good load b&awmthout sacrificing the locality. The
intermediate node is still chosen randomly buthwite restriction that the resulted path
is minimal.

A minimal version of Valiant's algorithm for k-arg-cube network can be
implemented by restricting the intermediate noderdside in the minimal quadrant
determined by the source and destination nodes [PB¢ minimal quadrant is the
smallest d-dimensional sub-network, cornered bysthace and the destination nodes.

2.3.4.6Turn Model Routing

Any routing algorithm faces two major problems: dleak and livelock.Deadlockis a
situation when a packet waits for an event thatoaroccur, for example when no
message can advance toward its destination bethesgueues of the message system
are full and each is waiting for another to maksotgces availabld.ivelock means a
case when routing a packet never leads to itsrdgsin (it can only occur with adaptive
non-minimal routing).

Deadlock-free routing may be achieved by restricthe possible routes that may
be followed by packets. The purpose is to elimirges. Dimension-Order Routing for
example, is deadlock-free because packets are liooted to cycle. However, DOR
significantly reduces the path diversity: in a 2B, from eight possible directions, four
of them are restricted. Freedom from livelock soaénsured because DOR is minimal.

The turn model [30] provides a way of achievingdleck- and livelock-free
routing algorithms that are partially adaptive. diln the case of DOR, the turn model
restricts the routing algorithm to take some pat#c directions, turns. As compared to
DOR, only a quarter of the possible turns are foitdnl in k-ary d-cube networks.

What the turn model does is to restrict one tuhis Effectively eliminates the cycles and
leads to three possible routing algorithms, whioh @eadlock- and livelock-free [30]:
west-first, north-last and negative-first.

13

Network-on-Chip Architectures

With west-first routing a packet
must always travel west first. Thi: | } _+ |

is because it is disallowed to tur
back west. North-last routing L L <J L <J
does not allow a packet to chang .
direction once it starts traveling ug West-first North-last Negative-
first

Finally, r_‘egat've'f'rSt rou_t'ng IS Fig. 9 Routing algorithms generated by the turn modl
characterized by not allowing turn
from a positive direction to a
negative one.

Obviously, these three algorithms may be implee@nas minimal or non-
minimal.

P-cube routing's another routing algorithm based on the turn ehdidiat applies
to hypercubes. Let us consider that we want toeraypacket from nodeto noded in a
binary n-cube. Thus, the source and destinatiore®i@dn be written as=s__s,,...S,

and d=d_,d_,..d,, where s,d. {01}, 0i =0,n-1.The algorithm builds set E as
E={i|s #d,0i =0,n-1} .The size of E is the Hamming distance betwsemd d.
This set is then divided into the disjoint setsdad &: E,={i |iUE,s =0,d, =1},
E, ={i|[iTE,s =1d, =0} . P-cube routing has two phases: first, the paiskeguted in

the dimensions of &z in any order, second the packet travels s Bimensions (in any
order). This algorithm is deadlock- and livelocted [30].

2.3.4.70dd-even routing

Another partially adaptive routing protocol thatisadlock-free is the odd-even [31] turn
model. Compared to the previous turn model, itsnnavantage is that it provides a
more even routing adaptiveness for non-unifornfitrglatterns.

The odd-even routing restricts the east to nortth @ast to south turns at any
nodes located in an even column. For the odd cadunime north to west and south to
west turn are prohibited.

2.3.4.8Torus routing

As we have mentioned earlier, deadlock freedombea@nsured by restricting the routing
algorithm to use some paths, under certain comgitidnother way to prevent deadlocks
from occurring is to useirtual channelsA virtual channel is a group of multiple buffers
associated to the same physical channel. Usingalichannels, cycles can be broken
[24].

The torus routing protocol uses virtual channelawoid deadlocks. It is used with
tori networks and employs Dimension-Order Routinghwdateline classes to each
dimension. A dateline is a conceptual line acroskamnel of a ring network (or within a
single dimension of a torus). Each time a packess®s a specified dateline for each
dimension it is routed through another virtual aieln Dateline classes basically
transform a torus into a mesh.

14

Network-on-Chip Architectures

2.3.4.90ther Routing Algorithms

Obviously, there are a lot more routing algorithavailable in literature. For example,
Planar adaptive routing [32] appliesnadimensional meshes, tori and hypercubes. The
main idea is to provide adaptivity in only two dinsgons at a time. Thus, from the point
of view of this routing algorithm, the topologyssen as a series of bidimensional planes.
Another example is Duato’s protocol [26], whichr8tag from a deterministic or partially
adaptive routing mechanism generates a fully adaptiuting protocol.

2.3.5 Switching Mechanisms

There are three layers which must be distinguishetiveen in the operation of

interconnection networks [26]: the physical laydre switching layer and the routing
layer. The physical layer contains the link-levebtpcols (e.g.: X.25, HDLC) used for

transmitting packets and for managing the chanmbelsveen adjacent nodes. The
switching layer offers mechanisms for forwardinglgts across the network, by making
use of the protocols from the physical layer. Hinakhe routing layer has the

responsibility of establishing a path through teéaork for each message.

The switching technique determines when and hovickes are set to connect
router inputs to outputs and also the moment wheressage may be transferred across
the network. There are basically two switching teghes: circuit switching and packet
switching.

In circuit switching, a physical path from the source to the destinasaeserved
prior the message is transferred through the nétwidris path will be kept reserved until
all the message reaches the destination.

With packet switching a message is divided into smaller parts callezkeis.
Each packet is routed separately from source tbndgi®n. No path is reserved until the
whole message is routed. The first few bytes oheket form the logical header of the
packet. This typically contains routing and contrdbrmation.

When all the packet’s flits are buffered at eadierimediate node before they are
sent forward, this switching technique is calletbre-And-Forward (SAF) switching.
Note that packet switching and store-and-forwaré@ching denote the same switching
technique [26].

However, it is not necessarily to wait for the wglacket to arrive before start
sending the already arrived flits forward througk hetwork. Flits can be forwarded as
soon as the routing was performed and an outpdebisf free. The data does not even
need to be buffered at the output and can cut girdo the input of the next router,
before the whole packet was received at the curreater. This is another basic
switching technique, calle¥irtual Cut-Through (VCT) switching . This technique
determines messages to be pipelined in the intasmion network, and it works with
flits, as compared to store-and-forward switchingich works with packages. Compared
to SAF switching, VCT switching has the advantalgat it can send messages faster.
However, it has the disadvantage that it can blalire routing paths in the network
when a message gets blocked somewhere in an ird&t@menode. In such a case, VCT
switching falls back to SAF switching: the wholgaavill get buffered at the node where
the head flit currently is. The performance of Vf&Ouces to the performance of SAF at
high network loads. Big buffers are still requirbar VCT switching (since it can
transform into SAF under high loads). Another applowould be to buffer the flits in

15

Network-on-Chip Architectures

the nodes where they currently are (and not toebwfl of them at the node where the
head flit is). This switching technique is calledormhole switching. Wormhole
switching has thus, the advantage that it alloves rietwork to use small buffers. This
makes it the preferred switching technique for Neks-on-Chip.

2.4 Common Topologies and Routing Protocols

After a brief presentation of some of the most papuetwork topologies and routing
protocols, we focus onto the Network-on-Chip fielle show how NoCs are usually
topologically organized and which are the most cammouting protocols used.

According to [33], meshes and tori are the topasgvhich are used in more than
60% of the papers currently published in the Nekaan-Chip research area. The rest of
the percentage is taken by fat-trees and crossibaegjual proportion, followed by rings.
This study also concludes that there is no singledftopology that clearly outperforms
all the others. This is because the NoC'’s perfooeaatrongly depends on the application
which runs on it. Therefore, it is useful to resdathe relation between the application
mapping problem and network topologies.

It is also shown in [33] that deterministic routilggyused in 70% of the cases.
Hybrid routing techniques, like DyAD [34] or deftee routing were also proposed.
DyAD automatically switches between Dimension-OrBeuting and odd-even routing
[35]. Deflective routing avoids network hotspotsdmnaptively misrouting packets.

The NoC survey from [36] concludes that XY routisgnostly used in Network-
on-Chip research. It also confirms that mesh angsttopologies are the most researched
ones, followed by ring, butterfly, octagon and ewesgular networks.

An evaluation of the mesh and torus topologieqyausiifferent routing protocols
is performed in [37]. Because the torus has longpwaround links, the torus is
considered to be foldéd The Network-on-Chip is evaluated in terms of fate
bandwidth, power consumption and power/throughmttor The following routing
protocols are used: XY, odd-even [35], negativetf[B0] and Duato [26]. It is shown
that the XY routing protocol is the best routinghrique in a mesh. This is not the case
with the torus: XY routing yields the highest povsemsumption and power/throughput
ratio. The more adaptive the routing protocol I, lower the power consumption of the
torus is. This is because an adaptive algorithmesdletter use of the wrap around links.
The authors conclude that a torus topology is béten a mesh when network latency is
the objective. But, in terms of power consumptitie mesh topology gives better results
than the torus. However, this study is performely anith two stochastic traffic patterns:
uniform and hotspot. No traffic patterns from regdplications are used. Another
drawback is given by the fact that NoC scalabilitynot addressed: the mesh and torus
have a fixed 4 x 4 size. It would also be intergsto find out how these topologies, with
different routing algorithms, behave from a mubijective point of view. For example,
rather than evaluating the ratio between power tinoughput, it would be useful to
determine a tradeoff among two or more objectives.

Topology scaling is taken into account in [38].this paper, multiple topologies
are evaluated in terms of power consumption andnt@ogy scaling. The two objectives
were chosen because the topology has a severetimpabe power consumption and

3 A folded torus has all its links equal in length

16

Network-on-Chip Architectures

because a topology that is optimal at a currerggiation technology may lose its
optimality after some technology generations. Tieisearch starts with 2D mesh and
torus topologies. Then, high-dimensional meshes tod are also studied. Other
topologies included in this research are hieraathiteshes and tori and express cubes. A
hierarchical mesh/torus{-v, has the property that channels connect not jdgtcant
nodes but also v-nodes away neighbors in each dioenThese channels are naturally
longer and they are called express channels. Slpithe express cube is a hierarchical
network, noted ak-v. The metric used is the average energy requiredfbito reach its
destination. This is obtained with an analyticald@lowhich is general enough so that it
may be applied to all the topologies. The modealvedl an energy efficiency comparison
of the network topologies, across different tecbga@s. A uniform random traffic pattern
is assumed to be applied to the networks. Thigligfl for the analytical model because
the average hop count can be easily computed. Baséus model, the authors find that
hierarchical and express cubes save more energyhigh-dimensional tori. The authors
also try to evaluate the topologies under diffeteafic patterns. To this end, they resort
to network simulation for obtaining the average homunt. Then, the same analytical
model is applied to find out the energy consumptiSimulation is performed with
RSIM, on a 10 x 10 network. Several SPLASH benclmare run. Their traffic patterns
are collected and the average hop count is comp&ieaulation has the advantage of
allowing applying the analytical model on real apgiions. However, scalability is still
an issue since only 10 x 10 networks (2D torus,,HH23, H-4, E-2, E-3, E-4) are
analyzed.

The design space of Network-on —Chip topologie=xjgored in conjunction with
the application mapping problem in [39]. A recuesivi-partitioning heuristic algorithm
is used to map the IP cores onto NoC tiles. ThedRes execute a real application
(MPEG4 decoder) and other several synthetic trafiiterns, all of them being described
through Communication Task Graphs. The topologsesiun this research are: 2D mesh,
ring, Spidergon and crossbar. The Spidergon igpalogy similar to a bidirectional ring
but, it also has links that connect the oppositéeso Only deterministic routing is used
with all topologies (Dimension Order Routing). B shown that the ring performs
generally worse than the other topologies becaubas fewer channels. At the other
extreme is the crossbar, which performs better thknthe considered topologies.
Spidergon is more scalable than a mesh. An intagesesult is that for the MPEG4
application, the crossbar and mesh topologies elhawse than Spidergon and even
than the ring. The metric considered in this papeetwork throughput.

2.5 Research Problems

Marculescu et al. [3] identified the following majoesearch problems in the field of
Networks-on-Chip:

traffic modeling and benchmarking;

application scheduling;

application mapping;

routing;

switching;

Quality of Service (QoS) and congestion aalntr

power and thermal management;

Noohr~wbdRE

17

Network-on-Chip Architectures

8. reliability and fault tolerance;

9. topology design;

10.router design;

11.network channel design;
12.floorplanning and layout design;
13.clocking and power distribution;
14.analysis and simulation and

15. prototyping, testing and verification.

These NoC research problems determine a very canaplé difficult to explore design
space, which has four dimensiongpplication characterization communication
paradigm communication infrastructurandanalysis and solution evaluation

Application characterizatiomeans identifying the target applications and their
associated traffic patterns, and performing appboamapping and scheduling. Traffic
modeling and benchmarking determines effective isrctures, and application
partitioning allows the optimization of the NoC fm#mance and power consumption.
The following three research problems belong to #pplication characterization
category: traffic modeling and benchmarking, amlan mapping and application
scheduling. This thesis focuses on the applicatrmapping problem, which will be
presented in Chapter 3. There we will also briefbscribe the scheduling problem by
showing how it interacts with the mapping problem.

The communication paradigm for Network-on-Chips cae improved by
knowing the application mapping and traffic chagaistics. The effectiveness of the NoC
communication infrastructure depends on the rousind switching algorithms, Quality
of Service and congestion control, power and themanagement, and techniques for
increased reliability and fault tolerance.

The communication infrastructure is influenced bgdlogy, router, channel and
clocking strategies that can be used for the Nosigde Using a global clock becomes
difficult due to smaller process geometries, largare delays and higher levels of
integration of multiple cores on a chip. Also, thesign of the floorplan and layout of the
network architecture becomes mandatory for irreguddworks (in terms of topology and
tiles).

Finally, Network-on-Chip evaluation and validatiaare necessary steps for
ensuring NoC’s compliance with the initial speations.

2.6 Summary

This chapter presented a theoretical backgrountléwork-on-Chip architectures. They
offer the scalability that multicores and manycoresguire but, they have the big
disadvantage of being resource constrained. As veeved, there are many research
problems concerning NoC designs. One of them iswbidton-Chip application
mapping. This is the main topic of this thesis amdintroduce it in the next chapter.

The theory presented in this chapter and in Chéaptier strictly subordinated to
the scope and objectives of this PhD thesis. lerotfords, we did not intend a text book
like, exhaustive presentation, and we also do ladinca general valid rigor.

18

“The greater the difficulty, the more the glorysarmounting it.”
Epicurus

3 Network-on-Chip Application Mapping

In the previous chapter we showed that the NetworChip research field deals with
fifteen major problems. We will focus next only one of them, namely Network-on-
Chip application mapping.

We begin by defining the Network-on-Chip applioatiproblem and by showing
that it is an NP-hard problem. Then we show thabfam is directly connected to other
two NoC research problems: scheduling and rouliig.present the similarities between
scheduling and mapping and we introduce two stdtehe art NoC scheduling
algorithms.

We then propose a taxonomy for Network-on-Chip liagppon mapping
algorithms and we describe some of the state odthalgorithms for NoC mapping.

3.1 The Network-on-Chip Application Mapping Problem

The design flow of a Network-on-Chip architectuoe & specific application implies the
following three major steps [40]:

1. dividing the application into a graph of concurrtagks (threads);

2. assigning and scheduling the application taskkedat/ailable IP cores;

3. mapping each IP to a NoC tile, so that the metifdaterest are optimized.

The Network-on-Chigpplicationmapping problemvas formulated in [40] as the
topological placement of the IPs onto the on-chigstIt is an instance of thguadratic
assignment problenwhich is proven to be an NP-hard problem [41]e Bearch space
increases factorially with the system size. Fomaaia, a NoC with 8x8 tiles theoretically
allows 64! mappings. Theoretically, mappiNdP cores ont® network nodesil < M)

implies ﬁ possible core arrangements on the NoC nodes. \tleemumber of IP
cores is identical to the number of network nodds=M), the number of possible
mappings becomég!. This is therefore a permutation, combinatorialphpem. It
directly affects NoC’s performance in terms of ratg, throughput, power consumption,
energy etc. This is because typical network metiies latency and power are directly
proportional to distance.

A typical mapping cost function [42] is:

Cos(77OP)=> BW = > [bw_,, [Dist(i, j)], wherex is a particular mapping

10L 1<i, j<N

from P, the set of all possible mappingdsis the set of NoC links which are used by the
application.BW is the bandwidth delivered over lihkDist (i , j) is the distance between
nodesi and j (hop count) andbw.; is the bandwidth required by node for
communicating its data to nogle
Consider for example the following two mappings and z,. They consist of six
processing elements placed onto a 2D mesh NoC.cBE2nunicates 30 bits/s to PE6
and PE4 100 bits/s to PE3. We are interested ttua&eathe two mappings using the
above cost function.

19

Network-on-Chip Application Mapping

Mapping Mapping 1,
Fig. 10 Example of two mappingstl and a2

For the first mapping, we have:

Cosi(n,) =bwW(PE, - PE,)[Dist(PE, - PE;) +bwW(PE, - PE,)[Dist(PE, - PE,)
Cosf{(rr) = 30[Dist(PE, - PE;) +100MDist(PE, - PE,)

Cost(7;) =30[2+10003 =360

Similarly, for the second mapping we dgets{(7z,) =30[2+1002 = 260. Notice that the

only difference between the two mappings is theqigent of PE4 and PES. In the
second mapping, PE4 is closer to PE3. Becauseigff gdiven the above conditions,
mappingr; is better than mapping.

In the field of embedded systems, an applicatiotypgcally described through a
Communication Task Graph (CTG). A CTG is defined in [43] as a directedyclic
graphG'=G'(T,D), where each vertex, T , is a an application task (a computational

module in the application). A task typically hasigeed to it information likeexecution
time on every type of Processing Element (PE) availafole the NoC, energy
consumption(when assigned to a certain PEsk deadline(the time until the task
associated with the CTG node must complete its i@t [44]), etc. A directed arc
betweent; andt;, is noted asd, ; D Dand has a value associated to it, which represents

the communication volumev(d, ;), usually expressed in bits) exchanged betweers task
t;andt; . Each arc shows both data and control dependenkidata dependencsarks
that there is a communication between the two ta@kandt;) [45]. A control

dependencyndicates that a task cannot be executed befengrédecessor tasks are not
completely executed [45]. Thus, a data dependenbgsically an undirected arc between
two tasks. When such an arc is present betweenasks, it means that the two tasks are
communicating. When the arc is directed, the aaciew shows a control dependency
between the two tasks.

Note that a CTG is defined as an acyclic directegly However, in reality, the
tasks of an application may exhibit a communicapattern which creates loops. Loops
are not usually modeled with a CTG because of tieed-considerations. For hard real-
time applications, unbounded loops are avoided usxdhey do not allow bounds on
graph execution times. It is not possible to gu@arhat the worst-case communication
volume path can be executed under the specifiedlidealt is preferred that deadlines
can be assigned to tasks and a CTG typically heeriad attached to it. The CTG can
therefore be reiterated after a certain amounnud {46].

The Directed Acyclic Graph (DAG) model of a parbfjeogram is used in [47] to
address the scheduling problem. In our humble opinihe Network-on-Chip research

20

Network-on-Chip Application Mapping

community adopted the DAG model, from the schedutesearch area, with the name of
Communication Task Graph.

A task is defined in [47] as a set of instructidingt are executed sequentially, on
the same processor, without preemption. The taskriede in the DAG. It may have a
weight attached to it, which represents the contfmurtal cost. However, a CTG does not
weight the nodes because it is only communicatigented.

The DAG arcs model the communication messages ded precedence
constraints between tasks. The arcs are weightéld e@gmmunication costs. If two
communicating tasks are assigned to the same macdbeir communication cost will
be neglected. The precedence constraints are wdled the graph to be directed. They
show how communication flows among tasks. A nodeisallowed to start its execution
until it receives all the messages from its paremtes.

Program loops cannot be explicitly represented gusthe DAG model.
Conditional branches are not included as well. Aditg to [47], including loops and
branches in the DAG model is an implicitly diffituproblem. Additionally, many
numerical applications (e.g.: Fast Fourier Transfocontain loops with a number of
iterations known at compile time. For such prograteshniques like loop unrolling [6]
can be applied. This way, one or more loop iteratican form a task. Also, large classes
of numerical applications and data-flow programeeheery few conditional branches.

Scheduling a DAG with probabilistic branches andpl® was addressed in [48].
Each graph arc has a probability that the childenadl be executed immediately after
the parent node. Scheduling DAGs with conditionaniches is made in [49] by using,
beside the precedence graph, a branch graph, ttmujh DAG models that deal with
loops and/or conditional branches have been prahdbe Network-on-Chip research
community adopted the simple DAG model, withoutpgeaand conditional branches.
Therefore, a CTG does not model program loops mandhes. It focuses on the
communications among the tasks of data-flow program

The acyclic property of a Communication Task Grapldropped at a coarser
level, denoted by aApplication Characterization Graph (APCG). An APCG models
an application at the level of Intellectual ProgdiP) cores and it is defined in [43] as: a
directed graphG =G(C, A), where each vertex, [JC represents an IP core and each

directed arc,a ; 0 A, characterizes the communication between apeesd c;. This

may be application specific information like comnuation volume. It can also be
design constraints, like communication bandwidtbaaof IP cores, etc. As in the case of
a CTG, a directed arc of an APCG shows data anttaiatependencies. But, compared
to a CTG, an APCG allows cycles. For example, we tave a bidirectional
communication between two cores. Note that loops sill not desired in APCGs
because of real-time constraints. It is often prefeto transform a directed graph into a
Directed Acyclic Graph (DAG) [50]. This allows wdrsase execution time analysis,
which makes the APCG usable in hard real-time systas well.

An Application Characterization Graph is obtaineait a Communication Task
Graph by scheduling the tasks on available IP cores

Having the definitions for a CTG and an APCG, we ceow illustrate the
application mapping problem for NoCs using thedwihg figure.

21

Network-on-Chip Application Mapping

Metwork-on-Chip (MoC) architecture
Application Characterization Graph [APCG)

O application task Metwork tile

IPcore L. Metwark logic

Fig. 11 The Network-on-Chip application mapping prdolem

Obviously, the NP-hard problem cannot be solvednigans of exhaustive search.
Heuristic algorithms [51] are employed with the gpase of finding the best topological
placement of cores onto network nodes. The objedtito optimize network latency, its
energy consumption, etc. Multiple objectives maydilewed at the same time, too.

We show next that Network-on-Chip application maggpnteracts directly with
other two NoC research problems (see section @6)ing and application scheduling.

3.1.1 Application Mapping and Routing Problems

While a good mapping of cores onto network nodeslead to energy savings, the routes
used by the cores to communicate can have a grgetci on the NoC’s performance.
The best topological placement of cores onto nagesot enough to account for the
performance of the network. The next figure showseaample where two minimal
routes are available between the top-left and betight tiles of a 2D mesh NoC.
Choosing the proper route can increase the perfuwenaf the network.

22

Network-on-Chip Application Mapping

o
Network-on-Chip (BoC) architecture

Application Characterization Graph (APCG) —~ —— T i
O application task ietvrotic il
Pegre Network logic

Fig. 12 The application mapping and routing problens

This shows that thapplication mapping problem is tightly connected tothe routing
problem. Usually it is not necessarily to generate routraghs when placing IP cores
onto NoC tiles. A mapping algorithm may simply cioles that the NoC architecture is
using a particular routing protocol (like XY rouginin [40]). However, routing
information can help at obtaining a better mapp&gj.

3.1.2 Application Mapping and Scheduling Problems

Before mapping the IP cores onto the Network-onpGies, the application’s tasks and
communication transactions must be assigned ta\Nth@ resources. Additionally, the
tasks’ execution order must be established. Thisaled thescheduling problem for
NoC architectures [53] and is an NP-hard problemwels It has a considerable influence
on the energy consumed by the IP cores when contpudue to their heterogeneity. For
example, a DSP core may consume less energy tig@nexal purpose processor when
computing a Fast Fourier Transform. Also, the comication energy consumption of
the NoC architecture is affected by the task assegrt (because of the routing paths).

Therefore, the application mapping problem is cotet to the scheduling and
routing problems. The following figure illustratdss fact.

23

Network-on-Chip Application Mapping

Mapping

& % ,,,,,,,,,

Routing . ‘l(|

NetVJork-on-C‘PHE(NU‘CT architecture
Communication Task Graph (CTG) Application Characterization Graph (APCG) = om —_

O application task Metwaork tile

IF core

--------- Metwork logic

Fig. 13 The scheduling, application mapping and raing problems

An application is described through its CommunaatiTask Graph. A scheduling
algorithm is then used to assign application tg#keads) to available IP cores and to
specify their order of execution. After the schedyl step, the Application
Characterization Graph is obtained. Then, using appimg algorithm (which may
generate the routing function as well), the IP saee topologically placed onto the NoC
tiles.

We observe that both scheduling and mapping dlgos for Networks-on-Chip
have similar objectives. Increasing the performaraned decreasing the energy
consumption of a NoC, for a particular applicatiare two optimizations typically made
by such algorithms.

Ideally, both scheduling and mapping problems shdé treated together. In
other words “scheduling” means mapping the appbo& tasks onto the available IP
cores, and “mapping” means mapping the IP cores ¢m¢ available NoC nodes.
Therefore, both scheduling and mapping problems$wliga application mapping onto a
Network-on-Chip.

Nevertheless, because of the NP-hard complexitythef problem, mapping
applications onto NoCs is divided in a two-step cgss: scheduling, followed by
mapping.

We present next a two-step genetic algorithm widehls with the scheduling
problem for Networks-on-Chip. An approach that dealith both scheduling and
mapping problems is proposed in [53] where an gnawgare algorithm is presented.
However, because they are both NP-hard problems,n@ain focus will be on the
mapping problem. Therefore, we continue by progpsnclassification of application
mapping algorithms. Then, we present several agjmhic mapping algorithms, classified
according to our taxonomy. We present here onlg\anview of the algorithms. We give
detailed descriptions in [54].

3.1.3 Scheduling Algorithms for Network-on-Chip Arc hitectures

3.1.3.1Two-step, Single Objective Delay-Aware Genetic Algdhm

A two-step genetic algorithm is used in [55] fosigging the tasks of an application to
the IP cores placed onto a NoC that uses a 2D topsiogy. It is assumed that IP cores

24

Network-on-Chip Application Mapping

are already associated to the network nodes. Hethee,mapping problem is not
considered. Techniques for task scheduling are alaployed. The two-step genetic
algorithm has a single objective: map the taskaro&pplication onto network nodes so
that the overallexecution timeis minimized. The main steps of this algorithm are
presented next.

In the first step, the application tasks are assig
to classes of IP cores. In the second step, the tgs
are assigned to the IP core (from the selected <

CTG & NoC architecture

7

e —

class) which provides the highest performance. v
The last step of the algorithm involves scheduling .
techniques (like ASAP — As Soon As Possible,|or Task ?:j'%ngigt tolP
ALAP — As Late As Possible). group
The execution time is expressed through a
mathematical model developed for the estimation y
of the delays from a 2D mesh Network-on-ChipTask assignment to specific A
architecture. Three types of delays are identified |P from the chosen IP
and used by the algorithm: system delay, edge group (GA)
delay and average edge delay. The system dglay
of a task graph represents the delay given by the
execution of its critical path. It has twD
components: the execution time and the

Task scheduling

communication time. The communication |s (ASAP/ALAP)

modeled initially at a coarser level, through the

average edge delay. Then, the edge delay is used

so that a finer level modeling of the y

communication is used. s[Scheduling]
Each of the two steps of this algorithm is\a

genetic algorithm. The first genetic algorithi Fig. 14 Overview of the two-step, single
computes the fitness as system delay, using Objective delay-aware genetic algorithm
average edge delay. Its output is an assignmeasks$ to classes of IP cores. It is used as
input for the second genetic algorithm. This onenpotes the system delay using the
edge delay metric. Its output is an assignmentaskg to a specific IP core (from the
given IP core class).

Obviously, such a genetic algorithm could be maflerdy one step, by using
from the beginning the exact edge delay, insteatiefiverage edge delay. However, the
authors argue that a single step genetic algoritlomld be, either extremely slow, or it
would not provide good results in a reasonable arhofitime.

3.1.3.2Energy-Aware Scheduling

The Energy-Aware Scheduling (EAS) algorithm [S53tsially schedules the tasks and
communication transactions of an application whihunning on a Network-on-Chip
with heterogeneous Processing Elements (PEs). d3ies tare scheduled for execution
under real-time constraints. The main idea is t@ gnore slack (more time) to the tasks
which have a higher impact on the Network-on-Chipergy consumption and
performance. This algorithm is proposed for a No@van NX N 2D mesh topology,

25

Network-on-Chip Application Mapping

using XY routing. However, the authors claim thait algorithm can be adapted to any
NoC architecture.

The following analytical model is used for calcidgt the average energy

consumption for communicating a bit of daf,;, ™ = n,,.Er +(Nop ~DE, .

The Processing Element gends one bit of data to PE which passes through
Nhops N€tWOrk nodes in order to reach its destinatidme €nergy consumed by a router
and by a link is represented I _and E,_respectively.

The algorithm has two major steps. The |

first step allocates slack to all the tasks. A ta[;skCTG & NoC architecture
scheduling priority is computed based on its J

>

execution time and the energy that a PE would
require for executing it. y

The second step performs scheduling Budget slack allocation
hierarchically. Starting from the root task of the
CTG, each time the tasks that are considered for 4
scheduling are those for which the tasks they y
depend on were previously scheduled. The Level based scheduling
purpose is that each task has a minimum eailier
finish time less than its budgeted deadline. The
EAS algorithm works only with those two steps y
However, a third step is also employed so that the Search and repair
number of deadline misses may be further

decreased.

Search and repair is a greedy approach 4 .
with two working modes: Local Task Swapping Mapping & Scheduling
(LTS) and Global Task Migration (GTM). Th)

purpose of the LTS_ part is to reduc_e_the deadlinag 15 Overview of the Energy-Aware
misses by scheduling th_e_ more critical _tasks ' Scheduling algorithm

front of the more uncritical tasks. This task

reprioritization procedure is performed locallytla level of each PE. Since the changes
performed in the LTS mode are local, the commuidoa&nd computation energy of the
NoC are not affected.

The GTM part performs global changes. Such chaagesequired in the case of
heavily loaded PEs. A critical task is migratedatwther PE, which is selected in the
order of its communication and computation energgsamption. Obviously, the GTM
mode affects communication and computation enerfjthe NoC. It can lead to
increasing the energy consumption but, the advaritathat deadline misses are reduced.

The performance of the EAS algorithm is comparedh® one of an Earliest
Deadline First (EDF) scheduler. The Communicati@skl Graphs (which represent the
input of the algorithm) were obtained in three idst ways: (1) randomly, using the
TGFF tool [46], (2) from the E3S benchmark suité][and (3) from two real-world
applications (an audio/video encoder and an audiedvdecoder). Compared to EDF,
EAS achieves significant energy savings for alll@pgons.

26

Network-on-Chip Application Mapping

3.2 Taxonomy for the Application Mapping Algorithms

An application mapping algorithm takes into consitien the characteristics of the
application, and it has the purpose of findinglilkst placement of IP cores, onto the tiles
of the Network-on-Chip architecture. Obviously, #yplication mapping algorithm must
be aware of the NoC topology. The placement ottires onto the network nodes can be
made before the application starts to be executddtaannot be changed afterwards. We
call thistype of mapping a static mapping. Obviously, the mapping process is iteeati
multiple mappings are generated until the optimuapping is found but, in case of static
mapping, all the mappings are obtained before W@iaation starts running. If the
mapping of cores changes while the application,raeshave alynamicmapping. This

is typical for NoCs that are fault tolerant or apation-adaptive. This kind of mapping
could also lead to an increase of network perfogeaand/or to a decrease in power
consumption but, it is more difficult to implemdfitan static mapping is).

The factorial number of possible mappings can beredsed because it is very
likely that not every mapping is feasible. Thidbecause of the communication demands
of the application and the hardware limitations tbé underlying Network-on-Chip
architecture. For example, consider that we hawe ¢ammunicating IP cores which
require a bandwidth d bytes/s. The NoC architecture may have some timssupport
such high bandwidth and other links that do notpsupit. In such a case, mapping the
two IP cores so that they would require commumigptiver links that do not support the
required bandwidth would generate an impracticgbpivag. The bandwidth requirement
is an example of anapping constraint We define the mapping constraiM) as a
restriction, derived from the requirements of tpplacation and the characteristics of the
Network-on-Chip architecture, imposed when assmgdf cores to network nodes. Any
mapping constraint may limit the size of the seasplace. An application mapping
algorithm may or may not use one or more mappingsttaints but, usually this should
be an obvious thing to do because it would speedhepmapping algorithm. The
difficulty of using a mapping constraint consistshaving the means to evaluate if a
mapping satisfies or not that constraint.

The application mapping algorithm explores the dearee of possible mappings
and tries to find the best mapping (for a certgpligation and NoC architecture). In
order to determine the best mapping, at leastoptienization goal is required. Example
of optimization goals can be: network performancemmunication energy, power
consumption, etc. Thus, a mapping algorithm mayctedor the best mappings by
considering &ingle objectiveor evermultiple objectives

As we showed in Section 3.1.1, the mapping prob&eatso closely related to the
routing problem. Any routing algorithm may be appliafter the mapping has been done.
However, if the mapping algorithm is natuting aware, it is possible that the best
mapping does not actually provide the best netvp@ritormance due to the fact that the
routing paths were not considered when applyingofbtemization goals to the possible
mappings. A mapping algorithm can thus, deal wdéntifying the routing paths for the
mapped IP cores as well. The routing function canldierministicor adaptive Also, it
should provide freedom from deadlock and livelaakd it may have other characteristics
like being minimal.

To summarize, we have established that we have tiywes of application
mapping algorithms: static and dynamic. Any mappalgorithm, whether static or

27

Network-on-Chip Application Mapping

dynamic has at least one optimization goal (sirdjgctive or multi-objective). It may
use (one or more) mapping constraints. Also, it rdagermine the routing function,
during mapping. The routing can be deterministicadaptive and it can have other
properties like freedom form deadlock and otherg Neéve thus four classification
criteria:

. static optimization | single objective
mapping type dynamic goals multiple objective
with one or more generates routes
mapping mapping constraints routing while mapping
constraints without any mapping awareness | does not generate
constraint routes

An application mapping algorithm can be static ynamic. Either static or dynamic, the
mapping algorithm can have a single objective (8©)multiple objectives (MO) to
optimize. Characteristics like using mapping casts and being routing aware (RA)
are optional and can be applied to any type of nmgpgalgorithm (making it thus more
specific).

Finally, we note
that in [57], where the
scheduling problem is als
considered, the algorithmg
are classified as integratefi
or separated based
whether they treat Nod
mapping and scheduling
together or not. Wel
consider this to be goog
classification criteria whe
including application
scheduling, too. The
algorithms presented in the above cited paper are NoCs and for bus-based
multiprocessor embedded systems. The NoC algoridmasclassified only by whether
they have routing awareness or not. The algoritftondus-based systems are classified
according to their optimization goal (energy mirgation, handling soft real time
constraints or memory awareness). Issues like mgappe and mapping constraints are
also mentioned but they are not used as classdicatiteria. The single/multi objective
(optimization goals) criterion is not included. Té®re, we consider our proposed
taxonomy to be in accordance with the one from [&i] more general and suitable.

STATIC

DYNAMIC

Fig. 16 Taxonomy for application mapping algorithms

3.3 Mapping Algorithms for Network-on-Chip Architectures

The following section briefly presents several bé tmost known Network-on-Chip
application mapping algorithms available in litewa This is by far not an exhaustive
list. A survey of algorithms for NoC application ppang and scheduling is available in
[57]. It presents and compares some of the algostlwe present here and other
algorithms, too. Another good overview paper althatNoC application problem is [42].

28

Network-on-Chip Application Mapping

3.3.1 Simulated Annealing

Simulating Annealing (SA) [58] is a tree searchhteque that combines hill climbing
[59] with a random walk in order to yield efficigh@and also completeness. The hill
climbing algorithm never makes downhill moves sasitguaranteed to be incomplete
(because it can get stuck in a local maximum). l@ndther hand, moving to a successor
tree node, chosen randomly from all the possibéeessors, is very inefficient but more
complete. As we will see next, in the end, Simula@nealing reduces to hill climbing.

The idea behind this algorithm comes from metajlunghere annealing is the
process used to temper or harden metals and gjassating them to a high temperature
and then gradually cooling them, thus allowing tiegterial to coalesce into a low-energy
crystalline state.

An analogy for simulated annealing could be madé diopping a ball on a non-
uniform surface. We would like the ball to end uapthe deepest place from our surface
but, most likely, the ball will stop in a place whiis deep but it is not the deepest one. If
we shake the surface hard enough we will deterrtiveeball to exit from the local
minimum. However, we must not shake the surfacg kiard or it might leave the global
minimum, too. The simulated annealing
algorithm starts by shaking hard (i.e., at a highAPCG & NoC architecture]
temperature) and then gradually reduce the
intensity of the shaking (i.e., lower the <
temperature). y

Simulated annealing was proposed as|an Compare random
energy-aware mapping algorithm in [40], where mappings. Accept better
it was compared to a branch and bound ones and with a certain
algorithm (see section 3.3.2). In [52], SA wagrobability, worse ones tod.
extended so that it is also performance-aware
The analytical energy model presented in
section 3.1.3.2 was used. y

The advantages of Simulated Annealing Decrease temperature
are given by its ease of implementation, lts

applicability to many combinatorial ¢

optimization problems and the ability to givLe Mapping)
reasonably good solutions [60]. However, the)
parameters of the algorithm (like temperatui = Fig. 17 Overview of the Simulated
must be carefully chosen because SA can ea Annealing algorithm

run for very long times until it gives a solutiol.is shown in [40] that SA becomes
practically infeasible as the problem size increastowever, the simulated annealing
from [40] is a general implementation. Using dom&nowledge could potentially make
SA faster and thus feasible.

3.3.2 Branch and Bound

A Branch and Bound (BB) [53Igorithm is proposed in [40] for the mapping o$ iéhto
the NoC tiles. The mapping is energy-aware (theggnemodel from section 3.1.3.2 is
used), the purpose being to optimize the total camaation energy of the Network-on-
Chip, while bandwidth constraints are satisfiede Talgorithm is introduced for a 2D
mesh network witm x ntiles, which uses the deterministic XY routingaithm.

29

Network-on-Chip Application Mapping

The algorithm builds a search tree where each podtins a (partial) mapping.
Basically, the node from the search tree is an

array. Each element from the array is an IP CireAPCG & NoC architecture
A value set for an elemenfrom the array mean)
that the NoC node identified by that value is —

assigned to the IP core with identifierBranch v

and Bound has two major steps which are Branch

iterated:

- branch: an unexpanded node is selected
from the search tree; then, the next v 4
unmapped IP core (given by the selected
node) is enumeratively assigned to the
unoccupied tiles, and the child nodes are
generated; i
- bound: the new child node is checked if |t
is legal (i.e. it satisfies bandwidth)
constraints) and also if it can generate thn Fig. 18 Overview of the Branch and
best leaf nodes. If not, the node is n Bound algorithm
expanded further.
Each node from the search tree has a cost attachiedThis cost represents the energy
necessary for the communication among the alreadgped IPs. One can view this
number as the cost of the mapping held by the nblae.cost of a child node cannot be
less than the cost of its parent node becausehitteaontains one more IP core mapped
to the NoC (and obviously this IP core producesaeretwork traffic). Also, a node is
considered legal, if and only if the bandwidth rnegonents between the currently mapped
IPs are met. When an internal node is found illeta¢ sub-tree determined by it is
obviously illegal and thus it does not need to kel@ed. Note that this approach does
not lead to sub-optimality because bandwidth regnents are NoC architectural
constraints: it is architecturally not allowed tolate them.

Besides checking if a node is legal, deciding wéetr not to expand it requires
the following two metrics, which are assigned toreaode (from the search tree):
- Upper Bound Cost(UBC): the value of a node that is no less thanniinimum
cost of its legal descendant leaf nodes;
- Lower Bound Cost (LBC): the lowest cost of a node that its descehdiaf
nodes can possibly achieve.
Thus, one may view the UBC as a metric that infoamisvhich could be thieighest cost
of the best mapping that may result from the careid (internal) node. The LBC tells us
which could be théowest cost of the best mapping that may result fromdbwesidered
(internal) node. Based on these observations,dif@ning rule is inferred: a node is not
expanded when its cost or its LBC is higher thanlthwest UBC that was already found
in the whole search tree.

The speed of the Branch and Bound algorithm dependhe way UBC and LBC
are computed.

The UBC of a node is assigned the cost of theathelznt legal leaf node with the
smallest cost. Ayreedy method which maps the remaining IPs to unoccupied tiies,
used to determine the leaf node with the smallest. &t each step, the method takes the

Mapping

30

Network-on-Chip Application Mapping

next unmapped IP with the highest communication ateim and places it to the

topological location that is the closest to theald®pological location (the placement
depends on what tiles are still unoccupied). Thealidopological location is considered
the one which best facilitates the communicatiothefIP to be mapped with the already
mapped IPs (the communication volume between IRsnsidered to be known). After

the IP is placed onto the best unoccupied locatisminimum cost can be determined.

The performance of UBC computation is thus deteedhiby the speed of the
greedy mapping. The greedy method effectively tteeslo a quick mapping so that it
may find out what could be the cost of the best pivap that may be achieved starting
from the considered internal node of the searcé. tidne accuracy of the UBC value
strongly depends on the accuracy of the greedy mgpp

The LBC of a node is computed as the sum of tho@emunication costs, which
are generated by communications between: mappeditifsapped IPs and mapped and
unmapped IPs. LBC is essentially the cost of amlideapping. This is because each
unmapped core is considered to be placed so thanthimum energy is consumed but,
multiple cores could be placed onto the same n8de.LBC means: just place all the
unmapped cores as best as possible; do not coribatea node gets occupied, i.e. that
another core may no longer be placed there.

Having a way to compute the UBC and LBC of eactiendhe branch and bound
algorithm is able to get closer and faster to theneal solution (compared to Simulated
Annealing). However, because the mapping problenransNP-hard problem, more
heuristics are used to significantly reduce the matational time and to provide a near-
optimal solution.

To speedup the algorithm, the following technigaesused:

- IP ordering IPs are mapped in the order given by their comoation demand
(higher communication demand IPs are mapped earlier

- Priority Queue (PQ)the nodes are branched in the order given by itwst
(smallest cost nodes are branched first);

- Symmetry exploitatiorthe first core is placed only onto a part of M@C nodes
because the 2D mesh topology is symmetric (theofetkte nodes are just mirror
nodes).

The IP ordering heuristic is useful for applicasowhich do not have a uniform traffic

pattern (obviously, in case of uniform traffic, m@mmunication based ordering is
possible). Placing the nodes with higher commuiaoademand first reduces the number
of nodes to be expanded.

The Priority Queue technique allows decreasingnir@mum UBC. This also reduces

the number of nodes to be expanded.

When the length of the Priority Queue becomes &udly certain child nodes will
be further accepted. If the currently expandingenbds the minimal UBC, then all its
child nodes will be evaluated for insertion inte tjueue. Otherwise, only the child node
with the lowest cost and the child generated by ¢needy mapping (for UBC
computation) will be evaluated for insertion in tpeeue.

It is shown that this branch and bound algoritsnteins of times faster than the
general simulated annealing approach. The energygucoption determined by the
mappings obtained with branch and bound is not mhigher than that of general
simulated annealing’s mappings.

31

Network-on-Chip Application Mapping

Although a 2D mesh with XY routing was used, thligorithm can be adapted to
any network topology, with any static routing meaisan.

3.3.2.1Branch and Bound with Routing

The Branch and Bound algorithm (previously
presented) was further extended in [52] so t aAPCG & NoC archltecture
the objective is not just to perform a mapping /
which minimizes the communication energy but, <
also to do a performance aware mapping by B
generating a deadlock-free deterministic routi g Branché& build routing

function. The authors argue that the routing for table

NoCs should be deterministic, deadlock-free,

minimal and wormhole-based. This is mainly 1
because of two NoC architecture characteristics: Bound

resource limitation and stringent latency
requirements.

As it can be seen in the Figure 19, the same two A4 .
steps (branch and bound) are iteratively Mapping

performed. However, in the branch step routihg J
paths are also generated. Fig. 19 Overview of the Branch and

This version of the Branch and Bour Bound algorithm with routing
algorithm was also applied on a NoC with a 2D mgology. Anyway, the algorithm
can be used with any network topology.

This routing-aware version of the Branch and Boalgbrithm is better than the
first one because it addresses the mapping probl@m a more holistic perspective.
However, it has the disadvantage of a higher coatjmutal time.

Compared to the original implementation of the Braand Bound algorithm, the
search tree nodes also contaipath allocation table (PAT)This table stores the routing
paths for the traffic among the occupied tiles bé tnetwork, and it is generated
automatically (so that they are minimal, deadlcahd livelock-free).

Deadlock freedom is ensured by allowing only certarns for each routing path.
For this purpose, a Legal Turn Set (LTS) is usdgk duthors build their LTS by using the
legal turns from the west-first [30] and odd-ev8t][routing algorithms.

3.3.2.2Conclusions to branch and bound

The ideal branch and bound algorithm has the adgentf being able to find the optimal
solution. However, this might easily require a pbaive time because the size of the
search tree can increase exponentially. Not expgnthe illegal nodes significantly
reduces the search space. However, this is notglrntouobtain a mapping algorithm that
is fast enough. The two branch and bound algorithermgploy several heuristics
(prioritization of IP cores and nodes to be expandepology symmetry exploitation) in
order to be able to reach a near optimal mappisigeiaough.

The quality of the solutions given by the two maygpialgorithms is strongly
dependent on the energy model used and on how WBCRBC are computed.

The energy model is a simple analytical model.é&stst one disadvantage of this
model is that it is static: it may not be used veéittaptive routing.

32

Network-on-Chip Application Mapping

UBC computation relies on a greedy mapping techaithat quickly finds a
mapping by trying to place each core left unmappeda NoC node that is still
unoccupied so that the energy consumption is miniMaking local optimal decisions
does not necessarily lead to a global optimum. gieedy approach might not be the
most suitable one for UBC calculation. Howevehas the advantage of speed.

LBC is also not accurately computed. The approaalmrealistic because a core
is put in the best place of the NoC without consitgif a core was already mapped onto
that NoC node. Once again, the approach is fast Hoes not provide the tightest LBC.

Routing paths are also created fast. They are deladind livelock free but, it is
hard to say they are optimal since network dynamiesnot accounted for. Nevertheless,
it is better to generate such routes rather thaplgiassuming a NoC with XY routing.

Compared to simulated annealing, the sole advantége branch and bound
approach is speed. In terms of energy, the imprewsngiven by branch and bound are
almost negligible.

Branch and bound must make a tradeoff between mug@ory consumption
requirements and the amount of the pruned pafteo$éarch tree.

3.3.3 NMAP

NMAP [61] is another algorithm for mapping coresma NoC architecture with a 2D
mesh topology. Similar to the branch and bound rdalgo [40], NMAP performs the
mapping by satisfying bandwidth constraints but .
the algorithm is not energy-aware. However,| itAPCG & NoC architecture
takes into consideration the traffic splitting J
among Vvarious network paths mqlti-path
routing). Compared to single-path deterministic 4
routing, multi-path routing can further help at|nitial mapping (greedy, by
satisfying the bandwidth constraints by balancing communication demand)
the traffic across multiple network links.
The version of the NMAP algorithm
which works withsingle minimum-path routing
has three major phases.
In the initialization phase a first mapping
is computed. This initial mapping is performed by
mapping the cores in the order given by their
communication demand. The core which has the v
maximum communication volume is mapped pajr-wise swapping of
onto one of the nodes of the mesh that has a cores
maximum number of neighbors. Then, the rest.of
the cores are mapped one by one, in the order
given by their communication volume with the !
already mapped cores: each core is put OntOEd”]

\ 4
Single minimum-path
routing

v)

available node so that the communication cpst Mapping

with the already mapped cores is minimized.
The second phase of the algorith Fig. 20 Overview of the NMAP algorithm

involves minimum routing path computation: with single minimum-path routing

The pairs of communicating cores are sorted inedsing order, by the value of their

33

Network-on-Chip Application Mapping

communication flows. For each pair of cores, a gamsidis formed. This marks the place
from the topology where the shortest path betwaencores exits. The minimum path is
obtained by applying Dijkstra’s shortest path aifpon. Each path will have a weight
assigned. This weight is given by the communicatlandwidth sum of all the cores
which use that path. After the routing betweencate pairs is done, the communication
cost is computed for each pair, where bandwidttsttamts are satisfied.

The best mapping is found by pair-swapping core pimgs and iteratively
invoking step two of the algorithm until the bestpping is found.

The NMAP algorithm withmulti path-routingallows the splitting of the traffic
across multiple paths, for each pair of cores. Tingt phase of the algorithm
(initialization) is the same like in the case ot thingle-path version. Basically, the
difference consists on the fact the traffic carspl on multiple paths.

The authors of NMAP show that the average laterscyhigher when using
minimum single-path routing (as compared to whertipla paths are used). This is
because the network links are more congested whgle paths are used for routing. The
effect is emphasized when wormhole switching isduse this case, entire paths can be
blocked, which leads to a significant decreaseetivork bandwidth.

NMAP is essentially a greedy mapping algorithmisltwell-known that such
techniques perform locally optimal choices, hopthgt the global optimum will be
found. Obviously, a greedy approach may easilyifiedl local minimurfy failing to reach
the best solution (global minimum). Otherwise, NMARphasizes more the importance
of coupling application mapping to routing. It cganerate either single path or multi
path routes.

3.3.4 Algorithm for Mesh Based On-Chip Interconnect ion
Architectures

Both branch and bound [40] and NMAP [61] i
algorithms address the mapping problem for 20\PCG & NoC archltecture]
mesh NoCs, by considering bandwidth
constraints. The mapping algorithm presented in 4
[62] considers, besides bandwidth constraints, ¥
latency constraints as well. The objective of the -qye to router mapping
algorithm is to achieve a good trade-off between
placing closer the cores which have high
bandwidth traffic, so that the communication
energy is minimized, and placing closer the cores y
with tight latencies in order to satisfy tr:le Route Generation (RG) 1
performance constraints. Bandwidth and latency

constraints can be viewed as mutually
independent. For example, a cache miss does not
require high bandwidth but, it needs a small i
latency. MaoDi

The energy-latency trade-off is achievegd apping]
by a two-stage algorithm for Mesh based O

N_
Fig. 21 Overview of the MOCA algorithm

* Local minimum for a minimization problem, local rimum for a maximization problem

34

Network-on-Chip Application Mapping

Chip interconnection Architectures (MOCA).

In the first stage, a mapping of the cores on tleshmNoC is generated. In the
second stage, the MOCA algorithm creates a custute rfor each communication so
that bandwidth and latency constraints are satisfie

The placement of the cores is determined by reelgsiinvoking a method
(Fiduccia and Mattheyses [63]) that solves the lgnagrtitioning problem for the APCG.
The graph patrtitioning problem consists in dividitg graph intdk disjoint parts with
(approximately) equal size and having a minimum whative weight of the edges which
cross partitions. The edges of the graph are weiglhly considering bandwidth and
latency constraints. The communications which neglaw bandwidth but, tight latency
constrains are given priority over the communigaiavith high bandwidth but, relaxed
latency constraints. The reason for this approacthat bandwidth constraints can be
fulfilled by finding alternative routing paths, wteas latency constraints cannot be
satisfied in this way.

The graph partitioning process uses a slicing ffée. non-leaf nodes of this slicing tree
are the directions of each cut (horizontal - Hyertical - V) and its leaf nodes are the
cores. Dummy nodes are used to track the commiuonctaiaffic across partitions. The

purpose of this kind of nodes is to determine thenected nodes with large weights to
be placed close to each other. Each time the ARQ{Bsided, the graph corresponding to
the NoC topology is also cut. Through a divide andquer approach, the APCG is split
into approximately equally weighting parts. The NmPology graph is split in the same
way. Each APCG subgraph is assigned a NoC topaogygraph.

The second phase of the MOCA algorithm uses tlenglitree to generate a
unique route for each communication. This phase thas sub-phases. The first one
generates a minimal route for each communicatiow fby traversing the slicing tree.
The second one searches for a minimal route fooranwnication flowthat was not
successfully routed in the first phasde¢ause of bandwidth and latency constraifisis
hierarchical routing technique falls back to Dijle&d shortest path algorithm when it
cannot find a proper route. Bandwidth constraimés lwever respected in this case as
well, by restricting Dijkstra’s shortest path algbm from using the links which would
violate them.

The authors of the MOCA algorithm show that thdgoathm has a lower
complexity than that of the NMAP algorithm [61]. Wever, the solutions given by the
MOCA algorithm could have deadlocks. To solve thisblem, the authors suggest a
post-processing step which introduces virtual cleéat specific routers.

This algorithm is essentially an application of thduccia and Mattheyses [63]
algorithm for graph partitioning. Although this alighm has a linear execution time, it
cuts the APCG so that the resulted subgraphs demdsal in terms of the metrics of
interest. Obviously, this balancing is approximdtieis means that the gain obtained with
a cut, as compared with the gain obtained with lesrotut, is inexact. More than this, a
cut loses information because it eliminates gragdes. Thus, such approach works with
local information and not with global informatiomhis method is therefore fast but, it
may easily find a suboptimal solution.

3.3.5 Multi-objective Genetic Algorithm
All the algorithms presented above deal with thepivag problem for NoC architectures

35

Network-on-Chip Application Mapping

in a static manner. They do not take into consideration thaadyic effects of the
Network-on-Chip. Also, those algorithms are capable providing mappings by
optimizing asingle objectivelike energy, in [40], or performance, in [61].

In [64] it is presented a genetic algorithm whickrfprms amulti-objective
(power and performance) exploration of the mappgce of Networks-on-Chip. The
NoC uses a 2D mesh topology with Dimension OrdentiRg and wormhole switching.
The proposed algorithm provides not just a singlat®on (mapping), but rather a set of
solutions (mappings). Each solution is a Paretopimgpin the sense that it gives a
different tradeoff between the objectives which dce be optimized: power and
performance. The authors motivate their multi-otiyec approach of the mapping
problem by showing that it is possible that a é¢ertaapping proves to be the best in
terms of power but not in terms of performance a8 (@r vice versa).

The exploration of the mapping space is made indigps. First, a NoC simulator
is used to evaluate (in terms of performance andeppthe available mappings. The
evaluated mappings are used as inputs for the degbase of the algorithm, which
generates the next mappings to be evaluated. losdhbond step of the exploration
process, the SPEA2 [65] Genetic Algorithm is used.

This cited paper shows the potential of using welbwn and mature genetic
algorithms like SPEA2 for a multi-objective Netwesk-Chip application mapping. It
would be interesting to evaluate other such algord, too. Not only genetic algorithms
but, other evolutionary techniques might prove uiseds well. As it is shown in this
paper, the success of such algorithms is giveruligilde genetic operators (for the NoC
application mapping problem).

3.3.6 Multi-objective Genetic Algorithm for Mapping and Routing

A multi-objective approach for the mapping problenalso proposed in [66]. Compared
to the work from [64], this work addresses both piag and routing Network-on-Chip
problems, like it is done, for example, in [52].rBlavidth constraints are also considered.
The purpose is to obtain the Pareto set of mappamgsrouting functions so that the
averagecommunication delays minimized and théault tolerancecapabilities of the
network are maximized. Simulations performed orhlsyinthetic and real traffic patterns
show that a multi-objective optimization of the NgWWes better results than a sequential
optimization.

3.4 Summary

This chapter introduced the NP-hard problem of Nekaon-Chip application mapping.
This is a permutation problem, which deals with thpological placement of IP cores
onto Network-on-Chip tiles. We showed how it isedity connected to application
scheduling and routing. Application scheduling ilves assigning tasks to processors; it
is also an NP-hard mapping problem. We presentenl algorithms that perform
application scheduling. One of them treats appbeoatscheduling and application
mapping together. However, because both of themN&ehard problems, they are
usually treated separately by the research commn[8jit

In this PhD thesis we approach solely the NetwarkShip application mapping
problem. We introduced several state of the adrélgns that address our problem. We
classified them according to a taxonomy proposedshy

36

"Whatever you can do, or dream you can, begin it.
Boldness has genius, power, magic in it."

Johann Wolfgang von Goethe

4 Designing a Unified Framework for the Evaluation
and Optimization of NoC Application Mapping
Algorithms

The NoC application mapping problem is addressethbyresearch community through
application mapping (heuristic) algorithms. As vavé already shown in Chapter 3, these
algorithms consider the characteristics of both application and NoC architecture.
However, currently, the existing application magpaigorithms are basically evaluated
only on 2D mesh topologies. But, they can be exdndo work with other network
topologies, too. These algorithms are evaluategl onlsome specific NoC designs and
also, their performance cannot be directly comparedause a common evaluation
methodology is missing.

We propose a unified framework for the evaluatiod aptimization of Network-
on-Chip application mapping algorithms, callédiMap. Such a framework will allow a
better comparison of their performance. The frantkwaoll also be flexible so that many
NoC designs (e.qg.: different network topologies) ba used for testing the performance
of the mapping algorithms. An overview of UniMap svpublished in [67], [68]. Our
framework is an open source project available ur@@eL v3 license for the research
community [69].

We have successfully used UniMap on bligh Performance Computing (HPC)
System[70] from “Lucian Blaga” University of Sibiu, Romania. Our HPC currently
has 30 Intel Xeon E5405 homogenous quad coreslétfed 120 cores), operating at a
frequency of 2 GHz. This means a total 10 Intel cores This HPC system also
includes 4I1BM Cell Broadband Engine (Cell BE) processors (2 bladés;des). The
IBM Cell is a heterogeneous multicore, consistirigao64-bit dual thread PowerPC
(master) core plus 8 SIMD processors. These (shagejorial processors, called SPU
(Synergistic Processor Unit), are specialized fatadntensive processing domains like
cryptography, media and scientific applicationse HiPC allocates 4.84 GB of DRAM
memory for each two Intel quad cores and 7.85 GBRAM memory for each two IBM
Cell cores. This means a total&8.3 GBof DRAM memory. The total storage capacity
is approximatelyl.2 TB. We also performed simulations with UniMap on tHEC
system fronPolitehnica University of Bucharest, RomaniaUniMap is written in Java
which makes it highly portable and feasible to betHer improved with concurrent
programming characteristics.

We present in the following sections some relateatkwwhich sustains our
approach. Then, we show the design of our unifiednéwork and propose some
solutions for the major problems encountered.

4.1 Related Work

SUNMAP [71] is a tool for automatically selectiniget best Network-on-Chip topology
for a given application. It uses a generalizedivarsf the NMAP algorithm (see section

® Except the NoC simulator, which is written in C++

37

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

3.3.3), which can be applied no just on a 2D mash also on topologies like torus,
hypercube, 3-stage clos and butterfly.

This framework uses multiple routing protocols (dimion ordered routing,
minimum-path and traffic splitting). SUNMAP is a roplex tool for automatically
evaluating different topologies for Networks-on-@ghin an application-aware context.
The best topology is obtained by considering theimmization of the average packet
latency, by satisfying bandwidth constraints, arge tminimization of power
consumption, by satisfying area constraints.

SUNMAP uses a single application mapping algoritlem Considering other
mapping algorithms too, will provide a more compesive view on the performance of
different NoC architectures. This framework is adiy focused on network topology
selection and generation, rather than applicaticappimg. Also, the mappings are
evaluated with analytical models. The dynamic effeaf the network may be captured
only by using a Network-on-Chip simulator.

A framework for simulation and exploration of thepping space was proposed
by Ascia et al. [72]. They search for the best No@pping using a multi-objective
approach. A Network-on-Chip simulator is used taleate the mappings by considering
both power and performance metrics.

Three kinds of mapping algorithms are used (in @tirobjective version):
genetic (see Section 3.3.5), branch and boundsgseten 3.3.2) and NMAP (see section
3.3.3). Their NoC architecture uses a 2D meshloggowith Dimension Order Routing
and wormhole switching.

While SUNMAP is flexible in terms of NoC architece, the second approach
presented here is flexible in terms of Network-dmgCapplication mapping algorithms.
UniMap takes the advantages of both approacheemsxs above. Multiple application
mapping algorithms can be used to map real apmitabnto different Network-on-Chip
designs. The mappings may be evaluated using e#thalytical models or a NoC
simulator (developed by us). Also, multi-objectiyatimizations are possible.

4.1.1 NoC Designs with Topologies other than 2D Mes h

Obviously, a Network-on-Chip architecture with 2[2sh topology is not the best choice
in every situation. The work from [73] sustainssthifirmation. Long packet latencies are
expected with 2D mesh topologies because thera@rghort paths between remotely
situated nodes. More importantly, real-life apgimas have varying communication
requirements. An alternative for 2D mesh topologiesild be to use fully customized

topologies. However, although such topologies mlewnetter connectivity, they lose the
property of structured wiring (which 2D mesh togp&s have). A fully customized

topology has wires with varying length, performaiacel power consumption. Also, it is
very important to mention that specific routing @ithms are required for custom
topologies. In [73] the network topology is a syymsition of a few long-range links and
a 2D mesh. By using long-range links, shortcutsvben different regions of the network
are practically created.

The previously cited paper proves that a customoizaif the 2D mesh topology
significantly improves the performance of the Netkvon-Chip. Therefore, one should
not resume at evaluating an application mappingratgn on 2D mesh topologies only.
Researching how exactly application mapping algorg behave on other network

38

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

topologies could prove useful, especially if sev@aaplication mapping algorithms are
evaluated within a common NoC simulation framework.

4.1.2 Network Simulation for Application Mapping Al gorithms’
Evaluation

As it is shown in [72], a Network-on-Chip simulatsrobviously required to capture the
dynamics of a network. Analytical models may eals@yinsufficiently accurate.

As stated in HIPEAC's vision [1], the Network-on-i@hesearch field is too new,
so that mature tools are still not available. They expected only around year 2015. A
recent survey of NoC tools [74] presents a compar® some of the most known NoC
tools. A common characteristic of the majority bése simulators is that there are not
(yet) available for the research community. Besithesns-3 framework [75] for Internet
networks simulation, Noxim [76] is (according tastisurvey) the only network simulator
currently freely available.

Noxim is a highly customizable simulator. It haggmeters like: network size,
buffer size, packet size, routing algorithm, padkgtction rate, traffic pattern, etc. The
simulator allows NoC evaluation in terms of thropgh delay and power consumption.
However, it currently does not work with real apptions and it uses just the 2D mesh
topology. We found out it the mesh may only be ap ds 19x19 nodes. This is a
scalability issue since NoCs with 1000 nodes (WNIoEs) are already researched [77].
Additionally, we cannot estimate NoC area using iNDx

McPAT [78] is an integrated power, area and timiogl for multicore and
manycore designs. It can model a 2D mesh NoC betinterconnection part is not very
parameterizable yet. MCcPAT is currently in a betge of development.

We have therefore decided to implement our own Netvon-Chip simulator. It
is integrated into UniMap and it will be presenitedection 4.3.

4.2 The Unified Framework Design

UniMap is composed of the following major modules:

- amodel for representing real applications;

- amodule for assigning the application tasks todfes (Scheduller);

- a module that contains application mapping algorgt{Mapper);

- amodel for representing different Network-on-Chiphitectures;

- a Network-on-Chip simulator.
This design reflects the interaction between thémdek-on-Chip application mapping
problem and the other two problems with which temacts (routing and scheduling — see
sections 3.1.1 and, respectively, 3.1.2). Theutezdare as decoupled as possible. This
approach allows UniMap to be flexible, reusabled(arodular).

We use eXtensible Markup Language (XML) schemas da&scribe real
applications and Network-on-Chip architectures. T®eheduler, Mapper and NoC
simulator modules do not interact directly. Theynoounicate through XML models.
This approach theoretically allows any NoC simulato be used with UniMap.
Similarly, any scheduling or mapping algorithm ¢enintegrated as easy as possible.

The following figure illustrates these componentd aresents the design flow of
the unified framework.

39

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

v
Mapper

Configure NoC architecture

Y

Application

mapping
algorithms

NoC implementation

(CTG)

IP cores
(Communication Task Graph (~ Application Characterization Graph \

TYES

Network Analytical
8 traffic [+> NoC simulator model
generator

Y

Scheduller

Fig. 22 UniMap design flow

An application running on a NoC architecture isadié®d through its Communication
Task Graph (CTG). The CTG presents the applicgtemtitioned into tasks (concurrent
threads). It shows the communication pattern of #pplication: which tasks are
communicating with which tasks and the communicatiolume of the data exchanged
between tasks (e.g.: GMdenotes the communication volume from tagkoltask).

We propose obtaining CTGs in three distinct ways:

1. randomly, by using the TGFF [46] tool;
2. from realistic embedded applications, using the B&schmarks suite [56];
3. from real-world multithreaded applications, usihg CETA [50] tool.

The tasks must be first assigned to the IP coréss €an be done using a
scheduling algorithm. For example the EAS algori{B3] is able to perform scheduling
under real-time restrictions, while trying to optaa the energy consumption of the NoC
architecture.

The IP cores library from E3S was integrated in Nlap. For each IP core,
information like task execution time and power agngtion for a given task is known.

The output of the scheduling algorithm is the Apafion Characterization Graph
(APCG). The APCG is the input for the mapping ailtpon.

A main component of the framework will consist ititaary containing (state of
the art) application mapping algorithms’ implemeiatas. The performance of every
mapping algorithm can be evaluated on multiple N&Signs, through our developed
simulator.

The NoC simulator is another important part of tmafied framework. An
important aspect of the simulator consists in lexibility. This will impact on the
number of possible ways in which the simulated Na@ be configured. The simulator is
also responsible with determining the network’s f@enance represented through
multiple objectives (performance, energy consunmptietc.). This allows a thorough
comparison of the mapping algorithms, in a unifiednner. For each selected network
design (e.g.: the network topology can be variad)application mapping algorithm will

40

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

provide multiple mappings, until the best mappisgdetermined. The NoC simulator
includes a network traffic generator which emuldtescommunicational behavior of the
application (based on CTG and APCG graphs).

We justify in the following section why it is diffult to directly run real
applications on the modeled NoC architectures. nMaeds, we present the three tools
mentioned above in order to stress out how theyemibe communication pattern of an
application through a CTG. Our network traffic gexter is based on these CTG
generating tools. We continue by describing how mvedel the execution of the
application tasks by the IP cores. Finally, we eneésa Network-on-Chip simulator
developed for this unified framework.

4.2.1 Model for Real Applications’ Communication Pa tterns

4.2.1.1The Problem of Running Real Applications on NoC Simlators

A major problem that network simulators have isegivoy how exactly real applications
could be run. A network simulator is not capablexécuting binary code. It only knows
to route packets, it is communication oriented aotl execution oriented. A complex
simulator, which simulates IP cores that executal rparallel applications that
communicate over an interconnection network, wdddbetter suited. However, while
currently there are scalable network simulatorsitioare simulators do not provide the
same scalability (they can usually run no more teas of cores).

This is the main reason why traffic patterns aredu®r NoC research, instead of
real applications. A traffic pattern which provides statistic distribution of the
communication is something simple to model and dési to simulate. It can thus
provide useful results in the early phases of NeGetbpment. But, such a traffic pattern
does not capture all the properties of a real Ie.cbhe communication patterns of real
applications can be bursty and reactive; they ateisually uniformly distributed.

It is shown in [79] why it is difficult to captuthe communication patterns of real
applications. The authors propose a network traffemerator that can emulate the
communication of an IP core by grabbing the typed ahe timestamp of the
communication events. Thus, a real application witi on a full system simulator and
the communication patterns will be intercepted. Tra#fic generator will then be able to
mimic the communication pattern of the IP core dfecent NoC architectures. In order
to accomplish this, it is shown that the trafficngeator needs to beeactive This is
because the network latency varies from one NoQitacture to another. If only
communication timestamps would get collected, when@a message is delayed (due to
network congestion for example), this delay shqurlmpagate to subsequent messages as
well.

Therefore, directly running real applications ondealed NoC architecture is not
something easy to achieve. Also, our unified framws intended to use traffic patterns
from real application. Thus, like it is suggested45], we propose using CTGs to model
the communication pattern of an application.

41

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

4.2.1.2Using Communication Task Graphs to Model the
Communication Patterns of Real Applications

4.2.1.2.1Task Graphs For Free (TGFF)

A Communication Task Graph can be automaticallyegated using the TGFF [46]. This
tool allows the user to generate task graphs afrétieally unlimited size, in a random
fashion.

With TGFF, the nodes of the graph are tasks andaitbe of the graph represent
the communication between the tasks (nodes). Tde nbthe graph can also be seen as
a processor (IP core), and the arc of the graphbeamterpreted as a communication
resource. An arc can also have a number assodiatedThis represents the amount of
communication. TGFF allows the user to specify tluenber of tasks a graph should
have, the maximum in-degree and out-degree of taphgnodes, etc. An arbitrary
number of attributes can be associated to processw communication resources. Such
attributes can be: execution time, power consumptimpost, etc. The values of the
attributes are automatically (randomly) generated GFF, based on
some parameters specified by the user (e.g.: tteage value of the
attribute and the interval within it can vary).

TGFF can create only acyclic task graphs. Thisdsabse
TGFF takes into consideration (hard) real-time esyst Deadlines
may be set on the tasks from a graph. Additionallperiod may be 4000
assigned to a task. This means that such a taskreregecuted by a
processor after a specified amount of time. 15000

The advantage of using TGFF over simple (stoatiastiffic
patterns (like bit reverse, bit complement etc.}hat it provides a
standard method for generating random task graphs. 15000

period: 0.9 ms

15000

4000

4.2.1.2.2The E3S Benchmarks Suite

Another way of obtaining CTGs is the embedded systsynthesis 15000
benchmarks suite [56], which is based on the EEMMBO]
benchmarks suite. This benchmark suite contairksgesphs for five
embedded application types: automotive/industri@ipnsumer,
networking, office automation and telecommunicatiofihere is a
version of each task graph for three kinds of sgstedistributed
(cords), wireless client-server (cowls) and systawchip (mocsyn).
An application is described by a set of task graphs

Like in TGFF, the task graphs from E3S are Diredegclic
Graphs; they have a period and deadlines may bens&sks. The
period of a task graph is defined as the amount of tieteveen the
earliest start times of its consecutive executigi#g. A deadlineis
defined as the time by which the task associateld thie node must h)

_ . ard DL: 0.9 ms

complete its execution [44]. soft DL: 0.3 ms

Each task graph is described using an ASCII filehen TGFF
format. For example, task graph 2 from theto-indust-mosyn Fig. 23 The task

benchmark is described as in Fig. 24. graph 2 from the
aut0'|ndust'mocsyn

benchmark

42

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

It can be observed that there are two ma@TASK_GRAPH 2 {
elements in the above task graph descriptidgtERIOD 0.0009
file: TAS_K and ARC. Both _of them_ are 1 AsK src TYPE 45
characterized by the TYPE attribute (which is @ask f# TYPE 5
number). For the ARC element, the TASKrASK matrix TYPE 10
attribute specifies the amount @fTASKIfft TYPE 9
communication required by the data exchande*SK fir TYPE 6

: ASK angle TYPE O
between the interconnected tasks. The valu 25K road TYPE 13
which correspond to each TYPE of ARC afrgask table TYPE 14

specified in the same TGFF file (see Fig. 25)| TASK sink TYPE 45

@COMMUN_QUANT 0 { ARC a2_0 FROM src TO fir TYPE O

0 4E3 - ARC a2_1 FROM fir TO angle TYPE O
18E3 ARC a2_2 FROM src TO fft TYPE 2

2 15E3 ARC a2_3 FROM fft TO matrix TYPE 2
3 1E3 ARC a2_4 FROM matrix TO ifft TYPE 2
} ARC a2_5 FROM ifft TO angle TYPE 2

Fig. 25 The communication volumes ARC a2_6 FROM angle TO road TYPE 0

. ARC a2_7 FROM road TO table TYPE O
For example, TYPE O means a communicatiohrRc a2_8 FROM table TO sink TYPE 3

volume of 4000 bits.
For the TASK element, the TYPE attribute¢1ARD_DEADLINE d2_0 ON sink AT 0.0009
specifies the type of the task. For exampleCFT-DEADLINE d2_1 ON sink AT 0.0003
TYPE 5 denotes a Fast Fourier Transform Fig. 24 Textual representation for task
(Auto/Indust. Version). All these types are “graph 2, from auto-indust-mocsyn
described in thall-tasksfile (from E3S). For

each type of task, performance indexes are availalthey were obtained using the
embedded processors from EEMBC. The next figurewshan example with such
performance indexes, for the AMD ElanSC520 proaesso

AMD ElanSC520-133 MHz -- square
@CORE 0 {
price buffered max_freq width height densipreempt_power commun_en_bit
io_en_bit idle_power

33 1 1.33e+08 3.10e-03 3.10e-03 0.205 0 0 0.16
Hemm - —_ —_ —_ —_ — —
type version valid task_time preempt_time codis tisk_power
Fast Fourier Transform (Auto/Indust. Version)
5 0O 1 0.014 150E-6 7.1e+0%6

Fig. 26 Example of task execution times

It can be observed that for the FFT task, the al#M® processor requires an execution
time of 0.014 seconds and the power consumpti@rsisv.
With the E3S mocsyn benchmarks, a task is desctlivedgh the following parameters:
- type = the type of the task (all task types aredesd in theall_tasksfile);
- version = 0 (this parameter is always set to zero);

43

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

- valid = 0 or 1 (it is set to 1 when bdfs® andcbyte$ parameters are defined);

. 1 . . .
- task_time = g](the task execution time, in seconds);
ips

- preempt_time = task preemption time (taken frompgecdile);
- code_bits = 8chytes (the code size of the tashit#);
- task_power = the task power consumption, in Wadiseh from thegspecdile).

Each IP core has the following parameters:
- price = the core’s commercial price (taken frompbkpecdile);
- buffered = 1 (specifies if the communication of tt@e may be buffered; this
parameter is momentary set to 1);
- max_freq = the processor’s frequency, in Hz (taikem thepspecdile);
- width = the width of the core, in meters (compuiredn thearea parameter, taken
from thepspecdile);
- height = the height of the core, in meters (comgdtem thearea parameter,
taken from thespecdile);
- density = 0.275 (this parameter always has thigejal
- preempt_power = 0 (this parameter is momentaryosasro);
- commun_en_bit = O (this parameter is momentaryose¢ro);
- io_en_bit = 0 (this parameter is momentary seeto)
task_ power

- idle_power =
10

[W] (taken from thepspecdile).

4.2.1.2.3Automatically Extracting Communication Patterns fra
Multithreaded Applications

CETA [50] is a tool freely available for academésearch that allows an automatic run-
time Communication Extraction from Threaded Apgiiwas (CETA). It is implemented
as a Simics [81] module being dependent on theessmr architecture and Operating
System (OS). The current version of CETA runs owirtual machine emulating a
Pentium 4 processor and a RedHat 7.3 OS with wer2id.18 of the Linux kernel (it
includes SMP support).

While the (multithreaded) application runs, CETAdes the memory operations.
In order to know the thread that performs the menamcesses, the context switches
must be intercepted. Intercepting context switdeeshat makes this tool to be OS and
CPU dependent.

CETA performs data flow analysis and (with somehBwgtscripts) it generates the
Communication Task Graph (CTG) that correspondspication. Each node from this
graph is a thread (or process). The directed edfedlse graph show exactly how the
communication takes place among the threads: wihidkads communicate with which
threads and the amount of communicated data (esgues bytes). Each thread is
identified through its processes identifier (PID).

® Iterations per second (how many times the processoexecute the task in one second - a parameter
taken from EEMBC)
" Code size in bytes (the code size of the tasparameter taken from EEMBC)

44

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

Two important features of CETA are the Phase Rawmgétd CTGs and the Directed
Acyclic CTGs.

CETA allows the partitioning of a CTG based onsaruspecified phase number.
The phase is expressed in CPU clock cycles and ivbasically does is to splita CTG
into multiple CTGs. Each resulting CTG will contaonly the communication that
occurred within its corresponding phase. Such grageh can help at researching the
network contention because the threads’ communpitatan be more intensive only in
certain phases of execution. Still, it must be ddteat the user can specify a single phase
number for splitting a CTG. The user cannot formegke say that the first phase should
be 1000 CPU cycles long, the second phase 2000dyElgs, etc. The phase number is
constant.

CETA also has the ability of transforming a Phd&titioned CTG into a
Directed Acyclic CTG. This means eliminating thebaanded loops from a CTG, which
is important for hard real-time applications. A &ited Acyclic CTG allows bounds on
graph execution times.

Additionally, CETA permits the filtering of the tdaused for creating a CTG. The
threads can be filtered by PID and communicatioflumes which are less than a
specified number of bytes can be excluded. Alse,ufer can make use of the “magic”
instructions [81] from Simics. All those elementsntribute to a more focused
communication tracing by obtaining the CTG for sfieparts of the application.

CETA has the disadvantage of a significantly iasesl application simulation
time (compared to the simulation time of Simicsthaut CETA). Also, the memory
consumption can be very big. For example, the astheport ~2.87 GB of memory
required for obtaining the data flow of the Tachy®82] benchmark.

4.2.2 Model for the Processor Elements’ Execution

In [45] synthetic benchmarks are considered th&aBlaé kind of benchmarks for NoCs.
The main reason is that synthetic benchmarks sedte the system size while still
keeping the properties of some particular fixe@ sipplication benchmarks. A synthetic
benchmark represents an abstraction for a taskhgrith known computation times and
communication loads. Thus, such a benchmark doesatwally contain application code
but rather it tries to capture the communicatidredlavior of the application.

Synthetic benchmarks must capture the control atd dependencies between
tasks. A simple traffic pattern like uniform randodoes not account for such
dependencies. It simply injects packets into thevark with constant probability. Such a
stochastic behavior is unlikely to model a classredl applications. Obviously, a
complete implementation of real applications cagguall the dependencies. But, this
approach is considered too complicated and timswoing. It is considered in [45] that
the model of the communication is enough for thalwation of the communication
architecture. The details of the computations peréml are not necessary and thus, Finite
State Machines that emulate the communication etwiee tasks of the real applications
are proposed.

Communication Task Graphs (CTGs) are used for nmglehe applications.
TGFF [46] is proposed for generating such CTGs bseat provides control and data
dependencies.

45

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

Each Processing Element (PE) from the NoC is mddele a Finite State
Machine (FSM). The FSM is generated automaticathynfthe CTG and mapping, and it
contains the following information:

- task list: what tasks are mapped to the PE (this says to RBa data can be send
and from what PEs data can be received);

- control information : the data dependencies (e.g.: a communicationamiirtain
PE will be initiated only after enough data wasereed from another PE);

- processing time (P) how much time a PE requires to execute a taskenVh
enough data was received, the PE will execute Patipas (i.e. will wait for a
certain amount of time) before generating a respons

- transaction data amount (D) the size of the communication, which will be
generated after processing.

The PE that contains @ @

the root task of the

CTG starts injecting T Data received
Processing

-

packets into the

network with a ’

frequency specified by Data still needs @ completed
the CTG Wh”e the PE to be received

W|th the I‘OOt taSk |S Generate
initially in the network
processing state (2) o traffic
the FSM, the rest of the Fig. 27 The FSM associated to a PE

PEs are in the waiting

state (1). The PEs enter in the processing state alf required data are received. The
duration of the processing is given by the tasletgpd by the processing element type,
too. After the processing is done, the PE entesddte 3. In this state, the generated data
is sent to the required PEs. After all the generai@a has been sent, the PE reenters in
the waiting state.

4.2.3 An Interface for Representing the Inputs Used by the Unified
Framework

This section proposes an XML based interface fecdeing the inputs (applications and
NoC architectures) of our unified framework. UsiKiL schemas (XSDs), we represent
the structures of:
- an application task;
- an Intellectual Property (IP) core;
- a Communication Task Graph (CTG), provided by abyaty of applications
described through CTGs;
- an Application Characterization Graph (APCG), tedaby any scheduling
algorithm;
- amapping, generated by any application mappingriilfgn;
- the NoC node;
- the Network-on-Chip link;
- the NoC topology.

46

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

We have chosen the eXtensible Markup Language (XNir) creating an
interface to our unified framework’s inputs becaiiss a very useful format for keeping
and communicating data between decoupled systenaspiatform independent manner.
XMLs are easy to create and manipulate by compataisare also human readable.

The main reason for creating an interface for tipaiis of our framework is given
by our purpose to design a unified way of reseagtie application mapping problem.
Through this interface, the framework will exposkeatvinformation it requires and uses,
and also how this information must be organized.

Our XML interface uses XML binding tools to providecess to the XML
documents from Object Oriented code. We use tha Aawhitecture for XML Binding
(JAXB) [83] to map our interface to Java classes] we do the same with C++, by
making use of [84] (which is an XML data bindingtdor C++).

The following subsections briefly present the XMth8ma Definitions (XSDs)
for each of the framework’s inputs. More details available in [85].

4.2.3.1The Application Task

A task has the following components:
- ID: a unique task identifier;
- type: the category of tasks from which this tasgast of;
- name: the name assigned to this task (optionahpete).

4.2.3.2The IP Core

An IP core has the following characteristics:
- ID: a unique core identifier;
- name: the name assigned to this core (optionahpete);
- frequency: the clock frequency, in Hertz (optiopatameter);
- width: the core’s width, in meters (optional paraeng
- height: the core’s height, in meters (optional paeter);
- idlePower: the power (in Watts) consumed by thiseashen it is idle (optional
parameter).
Note that we may use width and height in orderaimpute the area of the core.

Any task that can be executed by a certain IP ospecified through an XML
data type with two attributes. TlexecTimégoptional) attribute tells us the execution time
(in seconds) of the task, when it runs on the epoading IP core. Thgower (optional)
attribute specifies the power (in Watts) required tbe task to be executed by the
corresponding IP core.

4.2.3.3The Communication Task Graph

The Communication Task Graph (CTG) describes adication that is divided into
communicating tasks. TheigTypedata type is used to represent a CTG.

The CTG has a unique identifier (tiee attribute) and optionally, period The
period of a CTG is a positive floating point numbexpressed in seconds. When it is
given, it tells us that the CTG must be periodicatkecuted. Additionally, a CTG marks
the communications between the tasks of the apjicaThey are described using the
communicationTypdata type.

47

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

The communicationTypspecifies the volume of data (in bits) sent frortask
(source) to another task (destination). The soanckdestination tasks belong to the data
type calledcommunicatingTaskTypdcach task is identified through the attribute.
Optionally, a communicating task may have deadlattsched to it.

A task deadline is a positive floating point numizgrd it may be eithesoft
(deadline) ohard (deadline).

4.2.3.4The Application Characterization Graph

The apcgTypehas two attributes: a unique identifiga)(and a CTG identifierctg). The
CTG identifier shows to which Communication Taska@r this APCG belongs to. An
APCG contains a list with the available IP coreacliEcore has at least one task assigned
to it. The core — task association is describealutpn thecoreType

Currently, the APCGaskTypes identical to theaskTypefrom the core XSD. In
future versions, the APC@&skTypemay contain additional information, like the time
when each task is scheduled to run.

4.2.3.5The Mapping

The mappingTypehas two attributes: a mapping unique identifid) &nd the identifier
of the APCG #&pcg for which this mapping was created. A mappingtaos a list of
NoC nodes. Each node must have at most on cognasisio it.

The mapTypeis used to represent the node — core associdiaoh core is
represented through its identifier (see the ID eletrfrom the core XSD). This is the
same for the network nodes. However, for the naithesidentifiers are based on the NoC
topology for which the mapping is created.

We use the XML schemas presented above for regmegethe applications
which run on our unified framework and the IP caomesp onto the NoC tiles. However,
we also need to describe the Network-on-Chip aechite. Information regarding the
NoC which will be simulated may also be neededhgydcheduling and mapping phases.
Thus, we similarly use the following XML schemasdescribe the Network-on-Chip
architecture.

4.2.3.6The NoC Node

The network node is described through tleeleTypeXML data type. It has a unique
identifier (d) and optionally, it may specify the identifier thie IPcore which is mapped
to it. Thecostelement is optional: it can be used to specifynibee’s cost, which can be
any kind metric, like for example energy consummti® mapping algorithm may use
this element.
Additionally, each node must be connected to atleae networkink (otherwise
it would be isolated). A network link may be usedtbe node to injecttype = “in”) or
to receive fype="out”) packets. Thealueattribute specifies the link’s unique identifier.
Also, a routing table may be available for a ndder example, an application
mapping might also provide the routing functioneTrbuting table entry has three fields:
the identifier of thesourcenode, the identifier of thdestinationnode and the identifier
of thelink which will be used to route the traffic comingrrtdhe source node and going
to the destination node.

48

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

Parameters that are specific to a certain netiap&logy may be described using
the topologyParameterTypeEach topology parameter is specified through tyyee
attribute and it is connected taapologyand has &alue

4.2.3.7The NoC Link

Each link is described using thekType It has a unique identifier and like in the case o
the network node, a link may havecast associated to it. For example, it can be the
energy needed to transmit a flit. However, the melaracteristic of a link is its
bandwidth expressed in bits per second.

The mandatory XML elements of a link are the seurode $ourceNodgand the
destination nodedgstinationNode packets are sent from a network node (the sptioce
another network node (the destination).

Like in the case of network nodes, parametersipéa a certain topology may
be specified using thepologyParameterType

4.2.3.8The NoC Topology

Nodes and links create the Network-on-Chip topolofwach topology is uniquely
identified using thed attribute (we use theameattribute for a human readable topology
naming).

Topology parameters may be used to set differeapepties of each kind of
topology (a 2D mesh, for example, has two parareetew and column).

4.2.4 The Scheduling Module

The scheduling module of our unified framework hhe role to provide a set of
algorithms that are responsible with mainly assignthe tasks of an application to
available IP cores. We do not currently deal widnping the execution of the assigned
tasks on the IP cores. Typically, a scheduling rtiggm works with a Communication
Task Graph as input and outputs an Application &dtarization Graph. We propose a
common interface to all of the scheduling algorighm

Currently, theSchedulerinterface simply defines th&cheduleoperation, which
involves reading a CTG, accessing the availablecdRe library (both defined using
XMLs), assigning tasks to cores through a certé&gorghm and outputting an XML file
containing an APCG.

For now, we have implemented just three simpleedalers: random, direct and
minimum execution time.

The random schedulerdeals with the task-to-core assignment in a random
fashion: for each CTG task, an IP core is randochigsen from the library of IP core.
Multiple tasks may be assigned to the same IP andethe same type of core may be
used multiple times (e.g.: we may have 3 DSP cersexactly the same configuration,
each of them having at least one task scheduleexixution).

Thedirect schedulejust assigns each task to the first IP core thatexecute it.

The minimum execution time schedukessigns each task to the IP core which
executes it the fastest time.

49

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

4.2.5 The Mapper Module

The mapping module holds the application mappimgprahms library of the unified
framework. An application mapping algorithm hasihke of topologically placing the IP
cores onto the available Network-on-Chip nodessés the Application Characterization
Graph provided by the scheduling module: all thedRes from this graph are assigned to
NoC nodes. The APCG and the mapping produced bwlteithm are both described
using the XML interface presented in Section 4.2.3

We have developed an interface, caldapper, for all the application algorithms
implemented by our unified framework.

Currently, the Mapper interface simply specifies thenap operation. This
involves: reading the APCG data from an XML fileapping the IP cores onto the nodes
of the given NoC and outputting the obtained magpimto an XML file. As a basic
precondition, this operation might throwT@aoFewNocNodesExcepti@xception when
the given NoC does not have enough nodes for alttines that need to be mapped (each
NoC node can hold only one IP core).

We have implemented thearmdom mapperas a basic application mapping
algorithm. ThisMapperrandomly places the IP cores onto the NoC tiles.

Another straightforwardMapper is the exhaustive search mappédt performs
mapping by generating all the possible mappingschvis obviously a factorial number.
This mapper is clearly unfeasible but, we usedrigenerating the optimal solutions on a
small 3x3 2D mesh NoC.

The mapping module contains all the applicatiomppirag algorithms developed
in our unified framework. Currently, we have intetgd the following algorithms:
Simulated Annealing (see Section 3.3.13.3.2) Bwrasthch and Bound (see Section 3.3.2).
We have also developed an Optimized Simulated Amgedit will be presented in
Chapter 6). UniMap also integrates the jMetaldigr[86], which provides state of the art
evolutionary algorithms for single and multi-objeet optimizations. Exactly what
evolutionary algorithms we used from jMetal will Betailed in Chapters 7 and 8.

We tried to implement the mapping algorithms asieately as possible. It is well
known that floating point numbers are representid approximation by computers. For
example, the number 0.1 cannot be representednarbifloating point with finite
precision because: Qgl= 0.000110011,. Since 0.1 would require an infinite number of
bits in order to be represented in base 2, apprtiom is inevitable. Representing 0.1 on
24 bits leads to the value 0.10000000149011611938%P5.

Floating point arithmetic in computers is therefapproximate. Knuth defines in
[87] (page 218) the following relations for floagipoint comparison with approximation:

a<b e b-a> eﬂnax{aj,|b|) (a definitely less thai)

a-b < a-b> eﬂnax{aj,|b|) (a definitely greater thah)
a=hb = |b_al < eﬂnin(]aj,|b|) (ais essentially equal tio)
a~b o |b _al < eDmax{aj,|b|) (ais approximately equal to)

50

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

Two relations are defined for testing if two floagi point numbers are equal.
According to Knuth, the *“essentially” relation isorsewhat stronger than the
“approximately” relation.

All the relations above are based on a positivé meanber that specifies the
degree of approximation considered. Weestet be themachine epsilon which gives an
upper bound on the relative error resulted dueotanding made in floating point
arithmetic. This number is the smallest floatingnpbamumber which may be represented
by a computer. Thus, it is machine dependent butan be easily computed. Based on
the algorithm from [88], ouMathUtils class automatically computes this number and
stores it in the MACHINE_EPSILON_FLOAT constant (8wat this computation is
performed only once per program run).

4.3 The Developed Network-on-Chip Simulator

In the following section we present ns-3 NoC, awek-on-Chip simulator that the
author of this Thesis started to develop duringfivis months of PhD external research
stage at Augsburg University (Germany), Departnoéi8ystems and Networking, led by
Professor Theo Ungerer. We decided to develop aur NoC simulator because the
current tools for this (new) research field ardl stimature. According to HiIPEAC's
vision [1], mature NoC simulators are expected anl2015.

We describe next a modular, flexible and scala®€ Simulator. Our ns-3 NoC
is an open source project, which we contributd&Network-on-Chip research area.

4.3.1 The ns-3 Network Simulation Framework

The ns-3 simulator is discrete-event network simulatortargeted primarily for research
and educational use. It is developed as a netwonklator for Internet systems. An
Internet stack is implemented (protocols like T@Py4, IPv6, UDP, ARP etc. are
available). Traditional routing protocols for Intet systems are also implemented. The
simulator provides multiple models for interconmegtnetwork nodes: point to point,
CSMA, wireless etc. ns-3 is written in C++ andlgaasupports Python scripts. It is built
after the successful ns-2 simulator, which was oheéhe most used simulators for
network research. There are over 50% of ACM ancElBEtwork simulation papers from
2000 - 2004 that cite the use of ns-2. The ns-geprestarted in 2006 and it is an open-
source project.
ns-3 is focused on modularity, reusability andeagtbility. It offers a clean
design (with a high accent put on software desmmj scalability. There is a set of
fundamental components (objects) with which ns-8kao
* Node the representation of a network entity such gseesonal computer, a
router, etc. A Node can aggregate other componastgrotocol stacks and
therefore, it has the capability to process packets
» Application: a packet generator and consumer which can rue Made and talk
to a set of network stacks;
» Topology. represents the network’s topology and it is cosagloof two elements:
o NetDevice the Network Interface (the link between a Nodel am
Channel);
o Channel the medium used to communicate and interconnetbDévice
objects;

51

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

ns-3 supports virtualization by developing two n®def integration with real
systems:
* ns-3 interconnects virtual machines (virtual maekinun on top of ns-3 devices
and channels);
* ns-3 stacks run in emulation mode and produce/ecnaspackets over real
devices.
To integrate with real network stacks and emit/coms packets, a real-time scheduler is
used to lock the simulation clock with the hardweleck. The purpose of the real-time
scheduler is to cause the progression of the stinalalock to occur synchronously with
respect to some external time base. Without theegmee of an external time base,
simulation time jumps instantly from one simulatade to the next. With a non-real time
scheduler, ns-3 freezes the simulation time dugugnt execution and the simulator
advances the simulation time to the next schedel@mt. A real time scheduler has the
same behavior but, it also attempts to keep thelaton clock aligned with the clock of
real (not simulated) machines.

While most simulators generate text files as thetput, ns-3 has a tracing system
for decoupling the generation of trace events ftheir serialization to a trace file. Two
serialization formats are currently supported: plegxt and PCAP. PCAP is the file
format used by known network protocol analyzerstwoek sniffers) like Wireshark
(http://www.wireshark.org/andtcpdump ns-3 traces are what the simulator produces as
output, and are typically used for tracking the ommication that occurs in the simulated
network.

ns-3 uses packet generators for creating traffithen network. They are called
applications. An application can perform the simpsk of injecting or consuming
network packets. The simulator currently does mpipsrt running real applications on
the simulated network (allowing parallel applicaso written in MPI, to run on an ns-3
simulator is a work in progress). Therefore, t@affatterns are typically used with ns-3
for evaluating the performance of a network.

The developers of ns-3 claim that this simulatasne of the fastest and the most
memory efficient simulator currently available. Hower, parts of the simulator are still
under development (for example, the visual pam®B is still experimental). There is
not yet a Graphic User Interface for building netwdopologies (the user has to
programmatically interconnect the network nodes).

Although ns-3 is mainly a network simulator fordmet systems, the core of the
simulator has been used for implementing a NetvaordChip simulator. Essentially, the
fundamental components of the ns-3 framework hasenbimplemented for a NoC
system.

The implementation of the ns-3 NoC simulator srfrom the work done in
[89], where a Network-on-Chip simulator, called N&i®, was developed using the Java
programming language. The ns-3 NoC simulator igteriin C++ and it is faster than
NoCSim. Our ns-3 NoC simulator inherits the feasw&NoCSim:

* 2D mesh NoC topology;

* Irvine [90] NoC architecture;

* Dimension order routing (XY and YX) and other twimple routing algorithms
based on network load: Static-Load-Bound and Selifized,;

* Wormhole switching;

52

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

» Deterministic (bit-complement, bit-reverse, matiisanspose) and stochastic
(uniform random) traffic patterns;

» User specified packet size;

» Packet injection probability;

» Synchronous network packet injection;

* Input channel buffering;

* Measuring the average packet latency after siomgathe NoC for a given
number of cycles (the NoC may also be warmed upafgpecified number of
clock cycles).

The ns-3 NoC simulator is however a more flexiblsglable and faster simulator. It also
adds more features. For example, it allows asymdu® network packet injection, more
switching mechanisms and topologies and it measposger consumption and area.
More details about ns-3 NoC are given in the negtisns.

4.3.2 The ns-3 NoC Architecture

We start presenting our developed simulator byweeing its architecture. The details
about each ns-3 NoC component are detailed aftdsvdahe ns-3 NoC basic architecture
is illustrated by the following figure, which pregs the major components of a network
node.

The NocApplication models an I
ns-3 application. It represents tr
Processing Element (PE) of a Networ
on-Chip, being responsible witl
injecting packets into the network an NocRouter :..
with receiving packets from the networ NocSwitchingProtocol
(obviously, it receives those packe
which are sent to it by other Processi
Elements).

Packets are injected into th NocRoutingProtocol
network with a frequency specified b
the parameter calledata rate Thedata
rate is expressed in bits per second, & N
based on the user configurable size NecApplication
packets, the packet injection frequeni "} NocNetDevice K
is determined. An ns-3 application rur <«—> NocChannel I
for a given amount of time. Therefore rjg 2g The architecture of the ns-3 NoC simulator
packets are injected into the network,
until the running time of the application ends. Aduhally, the user may specify a
maximum amount of bits that an application cananjeto the network.

This kind of ns-3 application allows for packetsh® injected into the network
asynchronously. However, the simulator also modelsis-3 application which mimics
the behavior of synchronous network (like in [89]).

The synchronous ns-3 application allows packetsetanjected into the network
with a certain injection probability. This applizat can inject one packet per clock
cycle. Each network router routes one packet pevar& cycle. Packets are injected for a

NocNode

53

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

certain number of cycles (specified by the useBtwdrk-on-Chip clock frequency is an
ns-3 NoC parameter.

The NocNodemodels the network node. It allows ns-3 appliceito connect to
it, and it also aggregates a router.

The NocRouter has the responsibility to route the packets thinaihg network. It
uses a switching mechanism for deciding when pacaet sent forward, and a routing
protocol which determines the next network nodereltiee packet will go.

The NocSwitchingProtocol represents a common specification for all the
switching techniques. Currently, the simulator iempénts store-and-forward, virtual cut-
through and wormhole switching techniques.

NocRoutingProtocol is an interface for all of the routing protocol®rh the
simulator. The routing protocols implemented aréménsion Order Routing, Static-
Load-Bound and Self-Optimized routing algorithms.

A NocNetDevicerepresents the Network Interface Controller (NI€)onnects
network nodes to network channels, and it is resibbe with sending and receiving
packets from adjacent nodes. The router has di@mtss to the net devices. Based on
what routing path is established, a certain netogewill be chosen for sending a packet.
The packet will travel through the channel assedb the selected net device and it will
arrive at the neighboring node via the correspandet device.

Each net device has one input queue and one ogtmue (which effectively
allow for input and output channel buffering). Téige of these queues can be specified
by the user. Note that, since the size of the ibpidfers is limited, it is possible that there
are not enough resources available to buffer alpackets which are injected into the
network. This problem is solved by considering tinre is a buffer with unlimited size
located at each processing element. This approashalso adopted in [91] and it is
based on the fact that each processing elemenisgits local memory to store the data
it needs to send over the network, until the Nof@&ly to transport it.

Each net device continuously monitors its inpueuwpiand as long as packets are
available, it requires the router to provide a eofdr the packet from the head of the
gueue (the switching mechanism will decide whenpaeket may be routed). After the
packet is ready to be sent, if the respective oblasravailable, the send will be made.

TheNocChannelimplements the communication channel used by éteark. It
is characterized by several parameters. The deaggractically the bandwidth of the
channel. It shows how many bits the channel canstea per second. The delay
parameter can be used to specify how much timectianel needs until it starts
transmitting the available data. The channel alldes half-duplex or full-duplex
communication. By default, we consider the NoC awehbidirectional links and thus we
use full-duplex NocChannels. Finally, the physiealgth of the link may be specified.

4.3.3 The Packet Format

A packet that travels through the network is mg Tail Head
of at least one flit. The first flit from a packist | it § fiit
called a head flit. A packet may contai :
additional flits, called data flits. Typically, thast - »
data flit from any packet is called a tail flit. IAl 0 ... M data flits
types of flits contain a data payload but, the he - Fig. 29 Packet format

54

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

flit also contains a header. The packet headeragmntinformation used at routing it
through the network. Basically, the source anddidstination of a packet are codified in
the header. The header is interpreted by the mutethe network. The data payload is
not interpreted.

The head flit represents the header of the padaditionally to the header, a
head packet can also contain a data payload, whigtpresented by one or more body
flits. A data packet is made only of body flits.

The following table presents the parts which corepseader.

Header | Size Description
part [bits]
distance 8 | The distance to the destination nogeessed relatively from the

source node.

source The address of the source node.

8
dataFlits 8 How many body flits the packet contains
groupAddr 16 | This field can codify a group of notiesvhich a packet can be sent
(useful for multicasting).

subdatald 8 | Can optionally be used for packagexindeOrdering packets is
important when they can reach the destination batder
(adaptive routing).

load 8 Propagates information about network loaef{u for adaptive
routing).

Fig. 30 shows the ns-3 NoC packet header.

[distance [source [dataFiits Jgroupaddrisubdataid { Toad
Fig. 30 The ns-3 NoC packet header format

The ns-3 NoC packet header is based on the Irvio€ Idrchitecture [90].
Currently, our simulator uses only the first thigsader fields. The other three fields,
useful for multicasting and adaptive routing are fiarther developments. We already
used thdoad field while testing ns-3 NoC with two adaptive timg algorithms which
will be presented in section 4.3.6.

Since ns-3 NoC works any kind of k-ary d-cube togyl thedistanceandsource
fields are technically implemented as arraysl @lements, 8 bits eacH {s the topology
number of dimensions). The header size increasesnatically with the NoC topology
dimensions.

For each dimension, we use the left most bit tokmdrether the destination node
is back or forward relative to the source node.d@mple, in a 2D mesh, this bit has the
following meaning:

- 1 means West (horizontally) and North (vertically);
- 0 means East (horizontally) and South (vertically).

With the ns-3 NoC simulator, the size of the datglgad is a parameter. The user
can decide how much payload data a flit can holdd&fault, the actual data content is
implicitly set by ns-3. However, the simulator all® the user to specify the contents of
the payload data.

55

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

In addition to the packet header (calddcHeade), the ns-3 NoC simulator also
uses a so called packet tagoCPacketTag This data structure conveniently stores
additional information used for allowing a betteftware modeling of the dependence
from head flits and data (body) flits:

- each data flit is tagged with the unique identibéthe head flit that it belongs to.
This allows for a better control of the packetsafthinake a packet;

- whenever a head flit remains blocked in the netwgmk it cannot advance
because the channel is busy), this informationejst because it can be used at
notifying data flits that their corresponding hetitdis blocked in the network

The purpose of the packet tag is to keep informaéibout the flits of packet, which is

additional to the one kept in the header of a pabkeause it is used more for software
modeling purposes. Another use of this is for kegphe time when the packet was
injected into the network and the time when thekpaceached its destination. This is
used for collecting statistics.

4.3.4 Network Topologies

Initially, ns-3 NoC implemented just the 2D meslpdimgy and a variation of it. The
topology used by the Irvine architecture is a 2Dsimthat vertically interconnects any
two nodes with two channels (not just one). As acfielor) diploma project from
“Lucian Blaga” University of Sibiu, Romania, coondited by Professor Lucian \fan,
PhD and Ciprian Radu (author of this Thesis), sttdadreea Gancea implemented a k-
ary d-cube NoC topology [92]. This includes the 2Bsh, 2D torus, 3D mesh, 3D torus
and hypercube network topologies. Additionally, Dienension Order Routing protocol
was generalized to be applied for any k-ary d-dopelogy.

The following UML class diagram summarizes the kwofdtopologies that are
currently supported by ns-3 NoC.

Noc Topelogy

+ MocTopolkgyi)

+ ~NocTopaolgy()

+ SetRouter)

+ SetRoutingPmtocal)

+ SetSwitching Pmotocol)

+ Instali)

+ GetDeatination RelativeDimensionaiP osition)

+ SaveTopologyi]

NoervineMesh2D NocMeshz2D NocTorus3D NocMeshsD NocToruszD NoezTorushD NocMeshND

Fig. 31 The ns-3 NoC topologies

8 The Virtual cut-through switching technique makss of such information

56

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

All ns-3 NoC topologies inherit thdocTopologyabstract class. As a consequence, they
must implement three methods. The first, calledtall, builds the topology by
instantiating the network nodes and communicatibanoels and then interconnecting
them. The second metho@€tDestinationRelativeDimensionalPositfjos invoked every
time ns-3 NoC needs to know the relative offsetalestination node, from a source
node, in any topology dimension. The third methedused to save the topology in
UniMap’s XML format. Using the setters of tiNocTopologyclass, we can specify the
size of the buffers and what kind of router, rogtand switching protocols the NoC will
use.

The classNocMeshNDimplements a k-ary d-cube topology. If we wantatixl
links between the boundary nodes (so that we olbbai)y) we use the clagdocTorusND
Bi-dimensional and tri-dimensional meshes and ¢an be instantiated with these two
classes. However, for convenience, we also havel#sses NocMesh2D, NocTorus2D,
NocMesh3D and NocTorus3D. A k-ary d-cube (meshudpris created by simply
specifying an array with the number of network rodg on each dimensioml).

4.3.5 Router Architectures

We present in this section the router architectdeagloped in ns-3 NoC. Essentially, we
adopted the common router design available in #tevork literature [26], [25]. This
router is for networks with a 2D mesh or 2D torogdlogy. We then adapted this router
design for the general k-ary d-cube and the IrNp€ topologies.

The following UML class diagram presents the nse€CNouter component.

NocRouter m_loadComponent | | padRouterComponent

<<Ptr>>

IrvineRouter FourWayRouter SoLoadRouterComponent SlbLoadRouterComponent

|

IrvineLoadRouter FourWayLoadRouter

Fig. 32 The ns-3 NoC router component

Two router architectures are implemented in th& INoC simulator: a generic router for
2D mesh topologies (calleBourWayRouter) and the Irvine router. Actually, the
FourWayRouter is designed so that it can be us#éd aviy k-ary d-cube NoC topology
(we gave it this name because it is inspired frotypacal router for 2D mesh networks).
An abstraction calledNocRouter specifies a generic router for the simulator. This
abstraction allows any concrete implementation afuder to make use of the load of the
network. However, this is not mandatory: a routdf lae able to work with or without
network load. The bridge design pattern [93] isduse decouple the NocRouter

57

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

abstraction from the router component implementativat deals with network load
information LoadRouterComponeny).

The LoadRouterComponent is an interface that requits implementations to
specify how a router is supposed to compute italllmad, and also what load value must
be propagated to the neighbor (from a certain tloer Note that the computation of the
load values is the responsibility of the router,evdas a routing protocol aware of the
network load (like SLB or SO) only uses the loadlea to perform route evaluations.
The advantage of such decoupling is that any rgupirotocol can make use of load
information, as it is computed by a certain loagteo component.

Currently, two load router components are impler@énone for the SLB algorithm and
another for the SO algorithm.

4.3.5.1The Four Way Router

The next figure shows the architecture of our degyed four way router. This router is
used with 2D mesh and 2D torus NoC topologies.

Injection Ejection
channel channel
A
v |
A
Y
> > > >
> > > >
Input Output
channels| channels
> > > >
> > Switch > >
A
o> Routing

Fig. 33 The four way router architecture

It is composed from a routing module, a switch & channel buffers. The injection
and ejection channels are used by the Processergegt to send and receive data to and
from the NoC. The four pairs of input and outpuamhels correspond to the four node
neighbors a NoC node may have in a 2D mesh (ostoBecause of the grid structure of
such topology, these channels are tagged with N&adist, West and South identifiers.
The size of each channel buffer is a simulator rpatar. It is expressed in number of
flits.

58

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

Each packet flit arrives at a router through migction channel or through one of
its input channels. Until it can be forwarded,t&ys in the corresponding buffer channel.

In order to forward a packet, the router useRRisiting module to compute the
output port to which it will send the packet. This module lzasouting protocol which
determines the packet’s route. Route computatigreiformed only for the head flit of a
packet. The rest of the packet’s flits will simdigllow the head flit. This is possible
because the router uses a small memory whereresdtee route used for each packet. A
packet route is kept until the tail flit of thatgbet is forwarded.

Once the packet route is known, the packet flieenthe switching phase. Here, a
switching mechanism determines when the flits Veillve the router and go to another
one (through an output channel). In general, aityclinnot be forwarded until the
assigned output channel buffer cannot hold thafdecause it is full). The switch works
like a crossbar: at any time, any input port caicdigpled to any uncoupled output port.

Once the flit reaches the output channel, it ba&lforwarded when that channel is
idle, i.e. it can transmit another flit. If outpabhannel buffering is not used, the switch
will not allow a flit to pass while the channelnst idle.

Our router is capable of forwarding a flit in aglie NoC clock cycle provided the
needed output channel is able to transmit it it ¢lgele.

This basic and simple router architecture is matrgled by the number of input —
output channel buffer pairs. By simply setting tbater to have two such pairs for each
NoC topology dimensionthis router architecture can be used with any k-drgube
NoC. This is in fact done automatically when buildihg topology.

This router design still needs to be improved akenit model more realistically a
practical router. As further work we intend to imlent virtual channels, required for
deadlock avoidance. A router pipeline will alsooall us to model the router more
accurately. Such pipeline typically has the follogiiphases: route computation, virtual
channel allocation, switch allocation and switciversal. When using virtual channels,
an allocator is needed to allocate virtual chanteefsackets and switch cycles to flits. An
arbiter is required to resolve the situations wtieare are multiple requests for a single
resource. For example, when two flits, one comiragnf North and another one from
West, need to take the South path at the same Wwheh of them will be the one
allowed first? An arbiter makes such decisionss the building block for allocators. An
allocator performs the more complex task of matghanset of resources with a set of
requesters. Any requester may need one or moreunceso Our current router
architecture relies on the internal event schedafens-3 framework to perform the
arbiter role. Each routing request is an event.nErare registered in an order and they
are processed in a first in first out manner. Talisws us to have a Round Robin
arbitration for resources.

4.3.5.2The Irvine Router

The Irvine router was proposed in [90] to routekads in a deadlock- and livelock-free
manner. Freedom from deadlock is achieved by useparate routing paths for the
vertical direction and unidirectional horizontaltips Livelock freedom is obtained by
using a minimal routing protocol.

° Or output ports, in case of multicasting. Howeves-3 NoC does not currently support multicasting.

59

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

As it may be seen in the following figure, the teruconsists of: an internal router,
a right router and a left router.

INR A INnL A

\4

2|

| Right router
Ll

A

y J

Internal
router

ml

IS~ Left router

T

Y

5

Right | VO [Lefti V¥ kR v kL
Fig. 34 The architecture of the Irvine router

Our simulator uses this router only for NoCs with lavine 2D mesh topology. The
internal router is only used as an interface topttoeessing element. It receives data from
the Processing Element through two injection chin(igight | andLeft). Everything
that needs to go East (E) or West (W) is pWRight | buffer, orLeft | buffer respectively.
The internal router forwards everything frdRight | to the right router and everything
from Left | to the left router. The right router is capableraiiting packets horizontally
only from West to East, while the left router caute horizontally from East to West.
For the North and South directions, both left aigthtrrouters have their own channels
(NL, SL and NR, SR respectively).

4.3.6 Routing Algorithms

Both router architectures developed in ns-3 NoCkvioyr default with a Dimension Order
Routing (DOR) algorithm (presented in section £223. They do not account for the
network load. From this point of view, the routidgcision may be improved by avoiding
the hot spots from the network. The hot spots @éntified by considering the load of
each router, and by avoiding them, the network ughput can be improved. The
following two algorithms perform routing by accoung for the network load.

60

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

4.3.6.1Static-Load-Bound Routing

Two routing algorithms which use load informatiom generate network routes are
proposed in [89]: the Static Load Bound (SLB) rogtalgorithm and the Self-Optimized
routing algorithm [94].

Both algorithms work by performing the followin@mgric steps (the differences
between the two will be presented later).

First, arouting functioncreates the set of available output channels foertain
packet. Second, selection functiorevaluates each possible route (determined by the
previous step), and selects the best one for rpttia packet.

Each router will have bcal load value computed for it. This will be propagated
to the router’s neighbors. The load value is cafledal” because it is not used by the
router which owns it to perform its routing; itasly used to inform the neighbors about
its load. For routing, a router only takes into@aat the load values of its neighbors.

The propagated load value (ploadjoes not include only the local load but also
the load values of the neighboring routers. Theaerdor this approach is that, the closer
a router is to a hot spot, the higher the propabatdue will be. The propagated load

> pIoad(dir)J

| pload(dir)|

Thelocal load value weights two thirds and one thirdmbad is given by the loads of
the neighbors. Only the neighbors that represergsipte routing directions are
considered (for example, the router is not allowedoute a packet back to the direction
it came from).

SLB evaluates all the possible routes with the atieh:
quality = direction—busychannel-loadedrouter.

The first parameter takes the value 2, when thduated direction leads the
packet closer to the destination. If not, the dicecparameter will be set to zero.

The second parameter is used to penalize a rodimegtion when its output
channel is currently busy. In case of a busy oughainnel, thdusy channeparameter
will be set to 1. This means that a routing patthvein occupied channel will have its
guality value decreased by 1.

The third parametefpaded router has the value 4 when the neighbor router is
too loaded. A router is considered too loaded witgroad value exceeds a certain
threshold. This threshold value defaults to 50,ibcdn be specified by the user.

The local load is computed asload = local 100. The

8(6speedt+ datalength)

parametetocal represents a counter which is incremented each aimew flit is sent.
This value is divided to a maximum load value, viahig specified by the speedup used to
send data flits (compared to head flitspeed and by the length of the messadata
length

Since all the parameters used at evaluating a lgessoute are fixed, this
algorithm is static in terms of how the network gestion is accounted for (all nodes
which are too loaded are treated in the same way).

value is computed apload = %[2 (oad +

61

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

4.3.6.2Self-Optimized Routing

The Self-Optimized algorithm (SO) uses the follogviformula to evaluate all the
possible routesquality = direction— %of remainingflits — 4 pload.

The first parameterlirection, is used for favoring the routing paths which are
progressive, i.e. they lead to the destination. #ue@ of 200 is considered for a
progressive direction. A non-progressive directieceives no such bonus.

The paramete¥oof remaining flitsmarks the percentage of packet flits which still
have to be sent on the selected output channtdeié is a route set for the packet, the
number of remaining flits is divided to the lengththe packet. This value penalizes a
route more when it will be occupied longer.

Thepload parameter is the propagated load, described above.

The local load is computed dsad =ﬂloo. The valuelocal represents

maxload
the sum of all flits which are in all of the inpoiffers.maxloadrepresents the sum of the
sizes of all of the input buffers.
Compared to the SLB algorithm, the SO algorithmatsaptive because it
evaluates a route by considering the current nétaiate.

4.3.7 Switching Techniques

The following switching techniques are implementedhe ns-3 NoC simulator: Store-
and-Forward (SAF), Virtual Cut-Through (VCT) and kfhole. Although wormhole
switching is mainly used with No&% having SAF and VCT also implemented allows us
to be able to measure the performance of the Nm€ndpy the switching technique.

Noc SwitchingProtoc ol

+ MNocSwitching P motocol()
+ ~MNocSwitchingP otocaoli)
+ ApplyFlowConirol)

Py
SafSwitching VetSwitc hing WormholeSwitching
- m_flitCount - m_flitCount .
+ Wormholke Switching ()
itchi - m_bkckedHeadFlit=z
Si0e Hmnhing = + ~Warmhols Switching ()
+ ~SafSwitching() + VetSwitching() + ApplyFlowControl)
+ ApplFlowContml() + ~VetSwitching ()
+ ApplFlowContmol()

Fig. 35 The ns-3 NoC switching component

Fig. 35 presents the UML class diagram for the mMée€ switching component. The
abstract classNocSwitchingProtocolspecifies that any switching technique must
implement theApplyFlowControl(...)method, which determines when a given flit is

9 This is actually the only switching technique ieplented in [89]

62

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

allowed to be forwarded. Since SAF switching waitsentire packet before forwarding
it, we use tham_flitCounthash table to store how many flits are still waifer every
packet for which the head flit arrived at the swWitt/CT uses then_blockedHeadFlits
member to know the head flits that remained blocked cannot currently advance. All
the packets with blocked head flits are accumulatetthe buffers of the current router
before they are allowed to be sent forward. Wormrsaitching has the simplest flow
control mechanism. A flit is allowed to pass evérge the output channel is ready to
transmit it.

4.3.8 Traffic Patterns
The traffic patterns currently used by the ns-3 No@ulator are a set of communication
patterns which consider the permutations that aually performed in parallel numerical
algorithms [26]. With these traffic patterns, thestination node for messages sent from a
certain node is always the same. Therefore, thadéct patterns do not generate a
uniform utilization of the network, but they offeigh temporal locality.

Considering that each network node is identifigdabunique number, which is
binary codified om bits,(S,,,S,,.....S,,S,), we present next the traffic patterns used in

this simulator.

4.3.8.1Bit-complement Traffic

With this traffic pattern, the destination nodeolstained by complementing each bit of
the source node.

(Sn—l’sn—Z""’Sl’SO) - (Sn—l’sn—Z""’g’g)

This traffic pattern determines packets to be mudmgonally. For example, in a 4x4
mesh, packets from node 1 (mesh coordinates (Owil))be sent to node 14 (mesh
coordinates (3, 2)). Note that the numbers havebeurof bits determined by the size of
the mesh (in this case 2 bits).

4.3.8.2Bit-reverse Traffic

This traffic pattern generates the destination eskliby reversing the bits of the source
address. The first bit from the source will be kst bit of the destination, the second bit
of the source becomes the last but one bit of #stimhAtion, and so on.

(814:S12:-28:%) = (85,80-8,2.5.4)

With this traffic pattern, some packets will be tsafong one axis, while other
packets will be sent diagonally. For example, #xd mesh, packets from node 5 (mesh
coordinates (1, 1)) will be sent to node 10 (mesbrdinates (2, 2)), and packets from
node 1 (mesh coordinates (0, 1)) will be sent end (mesh coordinates (0, 2)).

Note that it is possible for a traffic pattern tengrate as a destination node
exactly the source node. In such a trivial casetraific will actually be generated (e.g.:
node 0 would have to send packets to node 0 wightritffic pattern).

63

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

4.3.8.3Matrix-transpose Traffic

This traffic pattern generates the address of #simhtion node by concatenating the
second half of the bits from the source, with tlits vhich make the first half of the
source.

(S.4.S,5:-S.S,) (sn_l,sn_z,...,so,sn_l,...,snj
2 2 2

For example, in a 4x4 mesh, packets from node 6lfroeordinates (1, 2)) will be sent to

node 9 (mesh coordinates (2, 1)).

4.3.8.4Uniform random Traffic

Since all of the above traffic patterns do not datee a uniform utilization of the
network, the simulator also uses a uniform traffattern. With this traffic pattern, the
destination is generated without taking into ac¢dhe source but rather using a uniform
pseudorandom number generator.

4.3.9 Network Traffic Generator

Traffic patterns like the ones presented in thevabsection are (stochastic) micro-
benchmarks [45] which typically show only certatwork aspects. They also have the
advantage of being scalable. They are useful faluating a particular design parameter
of the communication architecture. For exampleedéht routing algorithms may be
compared using a uniform traffic pattern becauseedvily loads the NoC. However,
they do not represent real applications. Benchmagksesenting the communication
patterns exhibited by real applications, offer éeticcuracy for measuring the overall
performance of an application. Such benchmarksnamedatory when one needs to assess
how good a given NoC architecture is for a cergguplication (domain).

This section describes how ns-3 NoC is able to gg@enetwork traffic from
applications described through Communication Tas&p@s (CTGs). To achieve this
goal, we have developed an ns-3 application thateéments the Finite State Machine
(FSM) described in Section 4.2.2. By doing so,hage adopted the model proposed by
the Open Core Protocol International PartnershipfaP) for modeling real applications
for NoC benchmarking [45]. OCP-IP currently workghnsome of the most prestigious
NoC research groups from the wdrldo build a suitable benchmarking methodology for
Network-on-Chip simulation [95].

The CTG describes the communications that occiwden the tasks of an
application. For each application task, the CT@G te to what tasks it sends data, how
much data is communicated to each task and front tis&s data must be received so
that the communication may be started.

We also need to know to what cores the taskseoffiplication are assigned. This
information resides in the Application Charactetima Graph (APCG). Based on a CTG,

' Carnegie Mellon University, Massachusetts Ingtinft Technology, University of California at Ber&gl
and many others

64

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

the APCG is obtained using a scheduling e
algorithm. Having each task assigned to a core, .7
we know the time required for the execution of ;|
every task.]

All this information allows us to :
instantiate the Finite State Machine that describes
how an IP core executes instructions. The FSM é;s)re 0

implemented by an ns-3 application calle
NocCtgApplication. :

Our simulator can use the mapping:
information (obtained with any application
mapping algorithm) to assign a
NocCtgApplicationto each NoC node that has an ™ /
IP core assigned to it. e

Each NocCtgApplicationis programmed Fig. 36 Simple APCG with two tasks
with information from the CTG and the APCG ¢ @ssigned to the same IP core
that the FSM is able to mimic the execution of BRecore. Each CTG ns-3 application
contains a list of tasks (callgdsk sender lisbr remote task ligtfrom which it must
receive a certain volume of data before it cart stsrexecution. Additionally, the CTG
ns-3 application holds a list with all the taskswhich it will send data (calletbsk
destination listor local task lis}. After it receives all the data, tihocCtgApplicatiorwill
wait for a period of time given by the task execnttime, and then it will start sending
data to all the tasks. The ns-3 application injéuésdata into the network in the form of
packets that have a user customizable numben®fitid payload data size.

The FSM proposed in [45] (see Section 4.2.2) d¢ostaontrol information
regarding data dependencies. An example of suctratanformation is: if an IP core
received enough data, let it send a certain amotidata to another specified IP core.
More control information is needed to program skatite State Machine that models IP
cores which execute multiple tasks. The probleroiknow how the emulated IP core
executes several tasks. The execution may be siajuenultithreaded or parallel. Even
if tasks are executed sequentially, the FSM muse faa execution schedule. Consider
the Figure 36 APCG as example. In this case, tasksd 2 are assigned to core 0. They
have no dependency between them so, from the pbimew of core 0, tasks 0 and 2
could be executed in any order. Still, task 1 sigreed to core 1 and the first task sends
4000 bits to task 1 which then sends 4000 taskasto 2. Therefore, the FSM associated
to IP core O must first execute task 0, send ita dad then wait to receive 4000 bits from
core 1 before starting to execute task 2. If th&MRSsociated with IP core 0 is simply
programmed to know that it must receive data frétncobre 1, trying to simulate the
communication described in the APCG will resulinleadlock. This is because IP core
0 cannot send data until it receives 4000 bits foome 1. Core 1 also must wait for 4000
bits from core 0.

In order to avoid such kind of problems, dlocCtgApplicatios automatically
identifies which tasks are independent, i.e. theay €xecute and inject data into the NoC
immediately since they do not wait for data frony asther IP core. Therefore, our
developed traffic generator allows each IP corextecute its independent tasks even if it
has other dependent tasks. Regarding task schgdwur traffic generator simply

......

65

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

programs each IP core to execute its tasks inna@ra) sequential order. Our experience
gained with developing this traffic generator makedo believe more rules are required
for programming the Finite State Machines. Otheewibe traffic generator might not
model the real application correctly. We showeahdty easily deadlock and we proposed
a simple solution to avoid this problem. Howeveorenwork is required. In our opinion
a scheduling policy is also needed for making ta#it generator accurately. OCP-IP
recently published a work in progress traffic gatar [95]. Its development started in
parallel with ours, starting from the same FSM nmiodibeir traffic generator works by
defining a lot of rules for the FSMs, which are gtieally equivalent to a manual task
scheduling. We argue the static, predetermined taskeduling might become
cumbersome for complex benchmarks. It however hasadvantage of keeping the
traffic generator simple.

Like OCP-IP’s traffic generator, our traffic genemaconsiders that the root CTG
tasks may have a period assigned to them. Thiogepecifies with what frequency
these tasks produce new data. By doing so, the Gommcation Task Graph can be
reiterated. During application running, we can handtiple CTG iterations in flight.

Our ns-3 NoC traffic generator is mature enoughctorectly model the
benchmarks we used in this thesis. This is becthes®= benchmarks do not have more
than two tasks assigned per IP core. In this cabeng the problem presented in the
above example was enough to make our traffic géoreweork correctly. However OCP-
IP’s traffic generator allows for more flexibilignd accuracy than ours. This is why, as
further work, we plan to integrate it with ns-3 NoC

The following UML diagram presents the main chsegstics of the CTG ns-3
application.

NocCtgApplication TaskData

NocCtgApplication is an ns-Z

. . .. - m_period - m_id
Appllcatlc_)n that knows to inject|. " o " m_tasklist |- m_execTime
packets into the network base|- m_sisize > N + TaskData()
on the information provided by|- m_numberOfFiits + Getld)

a CTG (and its associate
APCG). The user specifies ho\
many flits a packet contain:
(m_numberOfFlits) and also thi
payload size (m_flitSize) of
each flit (in bytes). The field

m_taskList contains a list witl|-

all the tasks assigned to the If-
- ScheduleMextTx()

core represented by this ns-
application. For each task, w
know its execution time
(m_execTime). While the helpe
class TaskData is used to ket
the information about the task
assigned to the IP core, the cla
DependentTaskData is used -

keep the information about the

- m_totalExecTime
- m_totalData
- m_receivedData

+ NocCtgApplication()

+ ~NocCtgApplication()

+ SetTaskList()

+ SetRemoteTaskList()

+ SetlocalTaskList()
ContainsNotDependentT ask()
FlitReceivedCallback()

m_localTaskList

+ GetExecTime()

DependentTaskData

&

<<list>>

m_remoteT askList

[2

E

NocCtgApplicationHelper

- m_nodes
- m_mappingXmlFilePath
- m_iterations

+ NocCtgApplicationHelper()
+ Initialize()

+ SetAttribute()

- Install()

<<list>>

- m_senderTaskld
- m_senderNodeld
- m_data

- m_receivingT askld
- m_receivingNodeld

+ DependentTaskData()
+ GetSenderTaskld()

+ GetSenderNodeld()
+ GetData()

+ GetReceivingTaskld()
+ GetReceivingNodeld()

tasks from the task sender ar Fig. 37 UML class diagram for the ns-3 NoC networkraffic

66

generator

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

destination lists (m_ taskRemoteList and respelgtiven_taskLocallList). Each
DependentTaskData object models a data dependehegédn two tasks.

A sender (remote) task is a task that sends dathet IP core (modeled by a
NocCtgApplicatiorobject). It has a unique identifien(senderTask)dand it is assigned
to another IP core which is mapped to a certain MoQe (n_senderNode)d The
volume of data is kept in the field_data(in bits). The task of the IP core that receives
information from the sender task is identified thgh an ID (n_receivingTaskldand
through the associated NoC node (eceivingNodeld

A destination (local) task is a task to which dstaent by the IP core. The IP
core’s task which sends information to the destmatask is marked through the fields
m_senderTaskldand m_senderNodeld The destination task is identified by
m_receivingTasklé@ndm_receivingNodeldNote thatm_receivingNodelds used by the
NocCtgApplicatiorto know to what NoC node it has to send packets.

The CTG ns-3 application starts in a waiting st&iest, it waits to receive all the
data from the tasks which send packets to the tB. dthe fieldm_receivedDataounts
the bits received. The application is automaticalbtified when it receives packets
through the callbacklitReceivedCallback()When all data is receivedh(receivedData
=m_totalDatg, the application will simulate that it is exeagi It will therefore wait for
an amount of time equal to the execution time. Tliea application will start injecting
packets into the network until it sends all itsedakt each network clock cycle one flit is
injected. The application schedules itself for derotdata transmission using the method
ScheduleNextTx()As mentioned earlier, non-dependent tasks areuts@ without
waiting.

Each NocCtgApplicationis executed for a specified number of iterations
(m_iteration3. A CTG iteration ends when all the data transeditby all the IP cores has
been received by the destination NoC nodes. New @di@tions start after a specified
CTG period (m_period). We may have multiple CTGat®ns running at a moment in
time.

NocCtgApplicationHelperis a helper class that allows the user to easily
instantiate and install CTG ns-3 applications. dguires the user to specify the tasks
assigned to the IP core, the task sender and d8etinlists, the CTG period and the
number of CTG iterations.

A runnable instance of the ns-3 NoC simulatordecdlocMappingSimulatouses
the XML interface described in section 4.2.3 iderto get the network traffic pattern of
an application described through a CTcMappingSimulatouses [84] to read the
required information from XMLs. It accesses the CTA®CG and mapping data and
then, based on all this information, it installs @fs-3 applications which simulate the
traffic pattern of an application described throughCommunication Task Graph.
Obviously, the NocMappingSimulatoralso configures the available architectural
parameters of the simulated Network-on-Chip.

4.3.10 Power Consumption and Area Estimation

This section describes how we integrated ORION[28) into ns-3 NoC. ORION is a
power and area simulator for Networks-on-Chipslitieveloped at Princeton University
for almost ten years. ORION offered one of thet fpswer models for NoCs and it is
now widely used by the research community for estiing NoC power consumption.

67

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

The initial ORION version offered a power model oC routers. Dynamic and leakage
power models for the router's basic componentsf@sif crossbars and arbiters) were
proposed. ORION 2.0 is the latest version of tisutator. Compared to the initial one,
it brings substantial improvements. Some of thetrmoportant are: link and clock power
models and router and link area models. The tedgyahodels were also updated. Three
operating types (high, normal and low power modes)available at 90 nm and 65 nm
technologies, scaling down up to 32 nm.

There are three major power components [97]: dyoapawer, short circuit
power and leakage power. Dynamic power is the paler to charging circuit nodes.
Also called active power, this is used while theswit is performing its functions. Short
circuit power appears because of temporary shartiicicurrent path while switching. It
is usually small and thus ignored by architectsakagie power is primarily due to an
unwanted sub-threshold current in the transistanokl, when the transistor is turned off.
Hence, leakage power in unintended as it doesardtibute to the circuit’'s functions. As
technology goes below 65 nm, leakage power becaonugs important, as compared to
dynamic power.

ORION formulates dynamic power Bs=E[f, where energf =a [TV} .

f is the clock frequencyg the activity factor,C the load capacitance ai],the supply
voltage. The clock dynamic power model for clo&gisters, buffers, allocators, arbiters
and links are all obtained by defining how the loz@pacitance is computed. For
example, the link load capacitanceGs=C;, +C, +C..

Paramete€, is the input capacitance of the next repea®y,, and C_the ground and
coupling capacitance of the wire. The values fdfecent load capacitance components

are obtained from different industry data sheets.
Leakage power is computed by measuring the totalge current. ORION

formulates this current als,, (i,) =W(i,) [l 45 (i,S) * | gae (i, 9)) -

| oandl . are the sub-threshold and respectively gate lealagrents, per unit
transistor width, for a specific technologW(i,s)is the effective transistor width of
componenti at input states. For eachi ands, I, andl,

simulations using models at 65 nm technology.

Router and link area is computed using a layoutehfmt logic gates. Router area
is estimated by summing the areas of all its bngddlocks (plus 10%, representing the
spaces between the blocks). The area of a blockngputed by decomposing it in its
logic gates.

Buffer's area is computed by considering the wand bnd bit line lengths of the
FIFO (First In, First Out) buffer: Areay, =L, qine L where

L = F(Wc + 2(Pr + Pw)dw) and I‘bit—line = B(hcell + (Pr + Pw)dw)'
B is the buffer size, in flitd= is the flit size, in bits. The memory cell widthcaheight is

given by wgey and heey (dy accounts for wire spacing). The number of read and
respectively write ports are noted wRhandP,,.

Link (wire) area is computed as followgres,, = F(w, +s,) +s,, wherew, is
the wire width andgis the spacing between wires.

were obtained through

gate

bit-line

word-line ell

68

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

We integrated the ORION 2.0 library in our develdpns-3 NoC simulator.
ORION keeps all its parameters into a single camégon file (SIM_port.h). We kept
the default values for all parameters, except g felnch are given by our simulator, at
runtime. For example, we consider the designed Mb®0 nm technology. Another
example is the voltage supply, set to 1 Volt. Th@CNclock frequency, flit and buffer
size are set by ns-3 NoC. The other parameterbyses-3 NoC are related to router
architecture: number of router input and outputtp@nd number of virtual channels.
This allows us to model more accurately each n®@ kbuter. For example, the Irvine
router, as compared to the four way router, ha#farent number of input ports. The
number of virtual channels is currently set to zbewause we do not have yet virtual
channels in ns-3 NoC.

The following UML diagram shows how ORION libranteracts with ns-3 NoC.

anan
B
!
. I ,
NocRouter I
- m_poweSounter Noc Channel
- m_dynamicPower 3 m_powe iCountar
- m_lkakagePower bt m_dynamicPower
- RoutednitForDron() + GetOynamicPowe) B m_lesksgeiner
- Compute Route rE nemgyAnd Powe iWithC ion () { """" + GetleakagePower) [~~~ """ = G;tDynsmi:Pu:-wen::I
- MeasumPowertndEnemgy() + GetTotalPowe) + GetlenkagaPowar))
+ GetDynamicPower) + GetAral) + GetTomlPowsr)
+ Getleakage Power)
+ Getdreal)
+ GetTotalPower)
+ Getheal)

Fig. 38 ORION integration in ns-3 NoC

ORION is called by ns-3 NoC each time a flit istemland each time a flit is transmitted
through a link. For every flit, ns-3 NoC gets thgndmic and leakage power needed to
route and transmit it. We use the _dynamicPoweand m_leakagePowemembers to
sum all the measured power values. By countindliisefor which power was measured
(m_powerCountgr ns-3 NoC can provide at any moment the averageep consumed
by all its routers and links. The power consumedhayentire NoC is computed with the
methods from theNocTopology class. The total power consumed by the NoC
(GetTotalPower() is obtained by summing the dynamic and leakageepa Similarly,
the area occupied by routers and channels is caudpdiheGetArea() method from
NocTopologyclass computes the area of the entire Network-oip.CThis method
accounts for all NoC routers and channels. If ve® ke into consideration the IP cores’
area, we will know the area occupied by the erfiystem-on-Chip (SoC). The same
rationing applies for power consumption. Obviouskince we also measure the

69

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

application runtime, we can compute the energy wmption. Energy is measured by
multiplying the total (average) power by applicatimntime.

4.3.11 Experimental Results

The ns-3 NoC simulator keeps statistics regardimg number of flits and packets
injected into the network. Using ORION, our simaolatcan measure NoC power
consumption and area. The latency of the packeteasured according to the definition
from [25]: “the latency of a network is the timequéred for a packet to traverse the
network, from the time the head of the packet agigt the input port to the time the tail
of the packet departs the output port”. The minimamd maximum packet latencies are
also collected. All those statistics are automéictored into a database.

We present next some preliminary simulation raespliblished in [98], were we
evaluated the potential of the NoC Irvine architeetand were we showed the impact of
the buffers’ size on NoC’s performance. The follogviresults express the network
performance, through the average latency of th&giacas a function of packet injection
probability. The synchronous version of the simaatias used. During the simulation,
the first 1000 cycles were considered warm-up &y[28]. Packets were injected into the
network for 10000 cycles. Only the packets injectdter the warm-up cycles were
collected into the statistics. The Irvine architeetwas used, with XY routing, wormhole
switching, input channel buffers of 9 flits in siaad packets of 8 flits in length. We set
the flit size to a few bytes. The effects of spagdip the data flits, like it is done in [90],
are shown it the following charts.

Fig. 39 shows how, on a 8x8 Irvine NoC, the averpacket latency decreases as
data flits are sent through the network using alkcfoequency which is two or four times
higher than the one used for advancing the hetsd fli

Bit-complement traffic in a 8x8 2D mesh Matrix-transpose traffic in a 8x8 2D mesh
60000 — T 6000 — T
m original —+— m original —+—
2 2x 2 2x
% 50000 AX X % 5000 AX X
& 40000 & 4000
2 2
© ©
— 30000 ~ 3000
g g
5] ; 5]
% 20000 e T 2000
[0} e B x [0}
o e <)
© 10000 e © 1000 H
o = [i
2 2
0 * ! . : ! 0 e
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Packet injection probability Packet injection probability
Bit-reverse traffic in a 8x8 2D mesh Uniform random traffic in a 8x8 2D mesh
18000 — T 18000 — T
m original —+— m original —+—
% 16000 2x % 16000 2%
& 14000 Ax e 8 14000 ax e
g 12000 g 12000
© 10000 © 10000
T 8000 T 8000
8]
8 6000 8 6000
) = [}
? 4000 I L g 4000 [
o 2000 e X o 2000 X
< 0 e . . < 0 - . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Packet injection probability Packet injection probability

Fig. 39 The average packet latency on a 8x8 IrvirdoC architecture, while the speed with which data
flits advance in the network varies for 4 differentcommunication patterns

70

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

With the matrix-transpose traffic pattern and usimg4 times higher clock
frequency for the data flits, the packet’s averldency remains close to the zero-load
latency, as long as the injection probability isvéo or equal than 0.9. The Irvine
architecture helps at decreasing the network caiogeshis is also visible for the other
three traffic patterns. The network is significgntéss congested when data flits are
transmitted faster than head flits. For the bit-ptament traffic pattern, the average
packet latency is fairly higher because each nogets packets. This is not true with the
other traffic patterns because they can creatéicridm a certain node to exactly the
same node, which is not injected into the netwdrkerefore, we believe that this
behavior might contribute to the bit-complemenigher packet latency.

We did similar simulations on a 4x4 Irvine NoC, tdde simulations on an 8x8
Irvine NoC took approximately 10 times more timaritthe simulations done on the 4x4
network. The longest simulation on a 4x4 netwoktaround 2 minutes and a half (this
is approximately 10 times faster than NoCSim [89]).

In order to further test the speed of the simulasome simulations were also
performed on a 32x32 2D mesh (1024 nodes). Bectusesimulation would take
considerable much more time on such a big netwbgk simulation was run for only 10
cycles, with no warm-up period. The longest simatatook around six minutes and a
half on a PC having the following characteristibgel quad-core at 2.66 GHz, 4 GB
DRAM and a Linux Operating System (Ubuntu 9.10).

BitComplement traffic in 32x32 mesh

data packet speedup=1 ——
data packet speedup =2
300 G data packet speedup =

Average latency (cycles)

0 0.2 0.4 0.6 0.8 1
Traffic (packets/node/cycle)

Fig. 40 Bit-Complement traffic, 32x32 Irvine NoC, wvormhole switching, XY routing

The following simulation result shows how the nBI8C simulator can be used at
evaluating the impact of the available bufferinga@rces on the NoC’s performance.

71

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

Uniform random traffic in d4xd 20 mesh

W B0 ;
u
% BO00
= 7000 |
g 000 |
- L
= 5000 huffer=z ——
© o huffer=3 —»—
el huffer=4 —#—

3000 .
7 buffer=H —=—
o 2o00T buFfer=a6
o otoo0 | buffer=7 —&—
o huffer=5
é 0 L L N N

0 0.7 0.4 0.6 0.8 1

Packet injection probability
Fig. 41 The average packet latency on a 4x4 IrvidoC architecture, while the size of the input
buffers varies uniformly

As it can be observed, the more buffering resouraes available, the better the
performance of the NoC architecture gets. As exgakdhe size of the input channel
buffers becomes more important as the number okgiadnjected into the network
increases. The simulations were run using the tmif@ndom traffic pattern, for 10000
clock cycles, with 1000 warm-up cycles. At eachleya flit can be injected in any node
of the network, with a certain probability of infem. XY routing with wormhole
switching has been used on a 4x4 Irvine NoC archite. No speedup has been used for
the data flits. Each packet has 9 flits, and tlee ©if the input channels was varied
uniformly, from 2 up to 8 flits.

In [92] we showed how the NoC performance varesopologies like: 2D mesh,
2D torus, 3D mesh, 3D torus and hypercube. For piarthe following figure shows the
buffer size influence on the performance of a (2¥2 hypercube. Unless specified
otherwise, the simulator’'s parameters have the satoes as before.

2500
—&— Buffer size=2

E 2000 - —— Buffer size=3
E —aA— Buffer size=4
E 1500 —jl— Buffer size=5
i'é Buffer size=6
E 1000 Buffer size=7
§ Buffer size =8
g’ 500 Buffer size =9
g Buffer size =10
0
0 0.2 0.4 0.6 0.8 1

Packet injection probability

Fig. 42 The average packet latency on a hypercubeo® architecture, while the size of the input
buffers varies uniformly

72

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

Like in the case of the 4x4 2D mesh, the Network=tmp’s performance improves as
the buffer size increases. We can also observe twv hypercube’s increased
connectivity decreases approximately four timesaverage packet latency, as compared
to a 2D mesh with the same number of NoC nodes.

We show next how the NoC'’s average packet latelecyeases as we increase the
node degree by switching from a 2D mesh to a 3Dhnaesl then to a hypercube. The
simulations were made using the uniform randoniitragttern.

12000
10000 l’/”"*/‘—éﬁo
8000

6000 /

4000 // —
2000 / ‘/"/./.’.’.—./.7
' T T T T T T T T 1
0.1 0.2 0.3 04 0.6 0.7 0.8 0.9 1

Average packet latency [cycles]

oF

0 0.5

Packet injection probability

—&—8x8 2D mesh ——4x4x4 3D mech 4x4x2x2 hypercube

Fig. 43 Average packet latency on 64 node mesh Nq@sth 2, 3 and respectively 4 dimensions

We observe a significant increase in the NoC’sqgrerénce when using a 3D mesh. The
performance increases even further when placing4hsodes in a hypercube topology.
The same behavior can be observed on torus togslogi

1200

1000

800

600 |

400 -

200

o
]
-

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Average packet latency [cycles]

Packet injection probability

—&— 4x4 2D torus ——4x2x2 3D torus 2x2x2x2 4D hypercube torus

Fig. 44 Average packet latency on 64 node torus NeQwith 2, 3 and respectively 4 dimensions

Note that since Dimension Order Routing is not tleddfree on torus topologies and
because ns-3 NoC does not yet support virtual edanwe increased the size of the

73

Designing a Unified Framework for the Evaluatior &ptimization of NoC Application
Mapping Algorithms

input buffers until deadlock was avoided. Thus, wged buffers with a size of 55 flits
(instead of 9). These big buffers explain why tlierage packet latency appears to be ten
times lower on torus topologies than on meshes.

4.4 Summary

We presented in this chapter UniMap, our developwdied framework for the
evaluation and optimization of Network-on-Chip apation mapping problems.
UniMap’s design is flexible, modular, reusable axdlable.

Using XML schemas we defined a model for represgntieal applications
(through Communication Task Graphs and Applicati@maracterization Graphs) and
Network-on-Chip architectures. Any researcher asilgimport his application into our
framework. We will show in Chapter 5 the benchrsarikegrated and used by us.

UniMap allows anyone to easily implement schedulingd/or mapping
algorithms. Then these algorithms can be evaluatetlcompared with the algorithms
already implemented in our unified framework. UnpMiategrated state of the art NoC
application mapping algorithms, like Simulated Aalireg and Branch and Bound. Using
the jMetal library we also make available someh# best single-objective and multi-
objective evolutionary algorithms currently avallln the research community. As we
will prove in Chapters 6 and 7, UniMap can alsoused to optimize Network-on-Chip
application mapping algorithms.

The Network-on-Chip application mappings can beluwatad in UniMap using
either analytical models or a modular and scal®@€ simulator. Our developed ns-3
NoC simulator is highly parameterizable. It cuthgnallows the user to specify: the
packet size, packet injection rate, buffexzesinetwork size, switching mechanism
(Store-and-Forward, Virtual Cut-Through and Wbole), routing protocol (XY, YX
and two adaptive protocols that consider tietwork’s load), network topology
and traffic patterns. It can evaluate the sinmda NoC in terms of network
latency and throughput. ns-3 NoC can instanaatek-ary d-cube network topology. It
also contains a network traffic generator base€®Gs and APCGs. Our simulator can
also estimate power consumption and area usingtéte of the art ORION 2.0 tool.

Besides the NoC simulator, UniMap can model Prangdslements using Finite
State Machines. Therefore entire System-on-Chipit@ctures can be modeled with our
UniMap framework. We will demonstrate this in Chep8.

UniMap is also capable of running on High Perforoe&omputing systems. As
we will show in Chapter 8, this is a very impottaaspect, a requirement, when
addressing the Design Space Exploration problem.

For the rest of this thesis we will present how mvade use of UniMap. We
believe our unified framework has big potential antte it is open source it could help
other researchers as well. This is even more impgrknowing the Network-on-Chip
research area is still at the beginning and powésfls are still needed.

More details regarding UniMap’s design are avaddhl[85].

74

“Light is the task where many share the toil.”

Homer

5 Benchmarks

In the previous chapter we presented our developéad framework for the evaluation
and optimization of Network-on-Chip application mapm algorithm. UniMap uses as
input traffic patterns for real applications, déised through directed graphs. As stated in
[45] Network-on-Chip benchmarking is still an opgroblem. The Open Core Protocol
International Partnership (OCP-IP) is currently kiog to model real applications for
NoC benchmarking [95].

This chapter presents the benchmarks used in tiis tResis, for studying the
Network-on-Chip application mapping problem. Allnomarks presented next describe
real applications, designed for Systems-on-ChigC&oThese applications are modeled
using Communication Task Graphs (see Section ®/&)gathered some of the most used
CTGs and APCGs by the NoC research community atebriated them in UniMap,
through a common XML representation. The commuim@oagraphs are taken from the
Embedded Systems Synthesis Benchmark Suite (E®$af from some of the most
cited papers from the field of Networks-on-Chip. \&@so make our contribution to
Network-on-Chip benchmarking, by proposing two f@é@mmunication Task Graphs for
a H.264 video decoder.

As compared to the general CTG definition from [8]e specify that a
Communication Task Graph should also have a passiyned to it. Thperiod of a task
graph is defined as the amount of time betweere#tnkest start times of its consecutive
executions [44]. Such information is used in E38e(section 4.2.1.2.2). The period
allows us to specify the application bandwidth rezments. Typically, the period is
measured in seconds. Let us consider a CTG witlogpef 0.1 seconds. If a graph arc
between two tasks,;Tand T, has a weight of 10 bits (communication volumes are
expressed in bits), it will mean that the commutiicabetween the two tasks will require
a bandwidth of 100 bits/second.

We begin by presenting the Communication Task Grajpdr each real
application. Then we show the Application Charaz&tion Graphs, i.e. how we group
the application tasks in order to assign them todies.

5.1 Embedded System Synthesis Benchmarks Suite (E3S)

This benchmark suite contains task graphs for figmbedded applications:
automotive/industrial, consumer, networking, offagomation and telecommunications.
Each application is described by a set of task gaphere is a version of each task
graph for three kinds of computing systems: disted, wireless client-server and
System-on-Chip. We use in our research only the i@anication Task Graphs designed
for Systems-on-Chip.

This benchmark suite is based on the Embedded ptiocessor Benchmark
Consortium (EEMBC) [80] benchmarks suite. It consaB4 embedded processors that
are characterized through: execution time and povegrsumption (measured on 47
tasks), die size, price, operating frequency arterotnformation. E3S also contains
communication resources that model different buses.

75

Benchmarks

Except “src” and “sink”, each task from the E3S Qoumication Task Graphs
represents an EEMBC benchmark. The tasks “src™amit” are just dummy tasks that
model a data producer and, respectively, a datsucoer.

We also have to note that E3S task graphs als@iconéard- and/or soft-real-time
deadlines. Since we do not work with real-time ¢@usts, we disregard deadlines from
E3S task graphs.

5.1.1 Automotive/industrial Application

The automotive/industrial application is made afrff@ommunication Task Graphs: CTG
0,1,2and3.

CTG 0 models an embedded automotive system with Gontroller Area
Network (CAN) interfaces, a basic integer and flogtpoint module and an actuator
driven by Pulse Width Modulation (PWM) signal.

The first CAN interface (canl) simulates the preges of Remote Data Request
(RDR) messages which are intended for the bastgé@ntand floating point module (fp).

The floating point module computes the functiarctan) using the telescoping

2
series:arctang) = x[—%, where P and Q are two polynomials and [0]] .

The second CAN interface processes the RDR messaig@sated from the fp
module and sends them to a PWN driven actuator. adh@ator commands a stepper
motor. PWN signals are simulated and it is verifiedce per PWM cycle, if the motor
reached the commanded position.

sre 4000 } cani 4000 }fp 4000 } can? 4000 } pulse 8000) sink
Fig. 45 auto-indust CTG 0 (period: 0.0009 seconds)

CTG 1 describes an embedded automotive system avitHnfinite Impulse
Response (IIR) filter and an inverse Discrete Gadiransform (iDCT) module.

The IIR filter tests the processor’s capabilitypeirforming multiply-accumulates
and rounding.

The iDCT module performs image recognition by gp an inverse discrete
cosine transform on an input data matrix set us#wpit integer arithmetic.

src 4000 piir 4000) idet 4000) sink
Fig. 46 auto-indust CTG 1 (period: 0.00045 seconds)

CTG 2 models a system with: Finite Impulse RespdifdR) filter, Fast Fourier
Transform (FFT) module, matrix arithmetic moduleydrse Fast Fourier Transform
(IFFT) module, angle to time convertor, road speaftulation and table lookup and
interpolation.

The FFT module performs a power spectrum analykia time varying input
waveform.

The matrix arithmetic module performs a LU decosipon of a square matrix,
computes the determinant of the input matrix amdctioss product with another matrix.

The iIFFT module does a time domain analysis ahpuat frequency spectrum.

76

Benchmarks

The angle to time convertor measures the delaysdea the pulses received from
a toothed wheel (gear) on the crankshaft of anrengihese pulses represent the
crankshaft's angle and the delay between themmgslar velocity, i.e. engine’s speed.

Road speed is computed based on differences betweer counter values.

Table lookup and interpolation is used by in ergoontrollers, anti-lock brake
systems or any other system where data must betlgiraccessed, not computed.
Sensitive data is thus stored in a table. In otddteep the size of the table small, only
some data points are memorized. The rest of therolztained through interpolation.

‘ fit 15000) matrix 15000) ifft
15000
15000 road 4000 1000
e ” g P) table) sink
)ﬁr 4000) angle

Fig. 47 auto-indust CTG 2 (period: 0.0009 seconds)

CTG 3 contains the following modules: pointer ¢hgqptr), cache “buster” and
tooth to spark.

Pointer chasing performs a lot of pointer manipaia a double linked list is
searched for entries matching a given items.

Cache “buster” is an application that uses dathfanction pointers so that data
and code locality does not occur.

Tooth-to-Spark is part of the Engine Control UCU) and performs real-time
processing of air/fuel mixture and ignition timind. controls the fuel injection and
ignition in the engine.

- 1000 } ptr 8OO0 } cache 8000) tooth 1000 } sink
Fig. 48 auto-indust CTG 3 (period: 0.0009 seconds)

5.1.2 Consumer Application
The consumer application is composed of two modwdesimage acquisition module
from a video camera (CTG 0) and an image printeduteo(CTG 1).

The tasks from CTG 0 deal with image acquisitidtering (applied on the red,
green and blue color components of the image),rgpace conversion (from RGB to
Y1Q), compression using JPEG and finally storage.

77

Benchmarks

SIc 8rc
2000600 2000000 2080000 1000000
L. . .
filt-g filt-r djpeg

2060000 2000000 200000

6000000 6000000

2>k ~ 4
rgb-vig rgb-cymk display
6000000 6000000
4
cipeg p':i’:i
1000000 Fig. 50 consumer CTG 1 (period:
- 0.015 seconds)
sink

Fig. 49 consumer CTG 0 (period: 0.06 seconds)

CTG 1 models image retrieval from the data stordB&G image decompression,
conversion from RGB color model to CMYK color moaeid the printing. The images
to be printed may also be viewed on a display.

5.1.3 Networking Application

This application models an Internet network roufar.Open Shortest First Path (OSPF)
task (that represents CTG 0) implements Dijkstsaisrtest path first algorithm to build a
routing table. Route lookup is then performed fetwork packets using an IP lookup
mechanism based on a Patricia Tree. The packet(fijwask changes the packet header
to mark the passage of that packet through therout

CTG 1 models a router through which packets with §12 kB pass.

sre 4124304) patricia 4194304) pf512 4194304) sink
Fig. 51 networking CTG 1 (period: 0.00135 seconds)

CTG 2 models a router through which packets with § MB pass.

sre 8388608) patricia 8388608) pfim 8388808) sink
Fig. 52 networking CTG 2 (period: 0.0009 seconds)

CTG 2 models a router through which packets witke & MB pass.

sre 16777216) patricia 16777216), pf2m 16777216) sink
Fig. 53 networking CTG 3 (period: 0.00135 seconds)

78

Benchmarks

5.1.4 Office Automation Application

The office automation application
contains tasks for image and te
processing, performed by a printer

The rotate task performs . 787000 1800
bitmap rotation algorithm to creat

sfc

a 90° rotation of an image. This i E -
useful for printers, when switching rolate fext
between portrait and landscay 787000
modes. o

The dithering task (dith) dith 1000
executes the Floyd-Steinberg Err 787000
Diffusion dithering algorithm to P
convert a grayscale image into sink

form ready for printing.

Text parsing is performec
by the text task. It represents .
printer application that parses an interpretatimetiol language like PCL or PostScript.

Fig. 54 office-automation CTG 0 (period: 0.03 secals)

5.1.5 Telecommunication Application

The E3S telecommunication application is composéchine Communication Task
Graphs. The following tasks are employed: autotation (ac), bit allocation (fpba),
convolutional encoder (ce), fast Fourier transf¢ffth and a GSM Viterbi decoder (gsm).

CTG 0 performs autocorrelation and convolutiomadagling. Autocorrelation is a
basic analysis tool in signal processing. In tebecmnications, it is used for speech
compression and recognition, channel estimationquesgce estimation, system
identification and other applications. A convolut# encoder is installed at the sender. It
adds redundancy to a transmitted electromagnetjoakito support forward error
correction on the receiver side.

sre 10000 }am 3000 g sink
4000

3000
) cel

Fig. 55 telecom CTG 0 (period: 0.001 seconds)

CTGs 1 and 2 are identical. Each one of them awhtthe following tasks:
autocorrelation, convolutional encoder, bit alla@matand Fast Fourier Transform (FFT).

A bit allocation algorithm is used for Digital Sadyiber Loop (DSL) modems that
use Discrete Multi-Tone (DMT) technology (which fi@gons a channel into independent
subchannels, called carriers). Such an algorithragsired to allocate a number of bits to
the channel’s carriers, according to each carrir@eéasured Signal to Noise Ratio (SNR).

Fast Fourier Transform is used for a frequencylyaig of signal. In
telecommunications, FFT allows for: filtering freency-dependent noise or interference
of a transmission, identifying the information cemtt of a frequency-modulated signal
etc.

79

Benchmarks

fpba2 2000) fft?
3008 \,

3000
10000
S a2 00 4
ce2 4000) sink
Fig. 56 telecom CTG 1 (period: 0.001 seconds)

4000
2000)uaa) sink

sro 10000) gc3 3004
3000

)fpbaa 3000 } fit3
Fig. 57 telecom CTG 2 (period: 0.001 seconds)

CTG 3 is a simple graph, which contains just & Fasrier Transform task.

ere | 3000 } #i1 3000) sink
Fig. 58 telecom CTG 3 (period: 0.001 seconds)

CTG 4 is a simple graph, which contains only aabdcation task.

src 3000) fpba 3000 } sink
Fig. 59 telecom CTG 4 (period: 0.001 seconds)

The last Communication Task Graphs are identi¢akey employ a Viterbi
decoder for GSM cellular telephony. The Viterbi oeer exploits a data stream’s
redundancy in order to recover the originally traited data. Such a decoder is placed
on the receiver side, while on the sender sidetodrasmission is placed a convolutional
encoder.

src 1000y gsm1 src 1000) gsm2
Fig. 60 telecom CTG 5 (period: 0.00033 seconds) Fig. 61 telecom CTG 6 (period: 0.00033 seconds)

sre—1000.) gsm3 ie 1000) gsma
Fig. 62 telecom CTG 7 (period: 0.00033 seconds) Fig. 63 telecom CTG 8 (period: 0.00033 seconds)

5.2 Audio Video Benchmarks

We present next a suite of benchmarks related dioaand/or video processing. Like
E3S benchmark suite, these Communication Task Graph used by the research
community for developing and evaluating Network®@hip application mapping

algorithms.

80

Benchmarks

5.2.1 MultiMedia System (MMS)

A generic Multimedia System (MMS) was used in [92])] to test the performance of a
Branch and Bound mapping algorithm on a real appbo. MMS is an audio video
system. It contains an MP3 audio encoder, an MR8oadecoder, an H.263 video
encoder and an H.263 video decoder.

The MMS application was partitioned into 40 comeunt tasks. They were
assigned to 16 cores in [52] and to 25 cores ih [40

We present next the Communication Task Graphstifer MMS application,
which we derived from the Application Characteri@at Graphs (APCGs) [3]. The
communications between tasks mapped on the sames aoe ignored. Therefore, our
MMS CTGs are partial. They do not show all the camivations between tasks but, all
the communications required for building a 16 caned 25 cores APCG are available.

CTG 0 was obtained from the MMS APCG from [52].&T was obtained from
the MMS APCG from [40]. We observe a single diffeze between the two CTGs: in
CTG 0, task VLD (Variable Length Decoding) sendsad@ IDCT (Inverse Discrete
Cosine Transform), while in CTG 1, VLD sends dataask IQ (Inverse Quantization).
Thus, we believe the two CTGs are essentially thmes However, in order to be
compatible with previous research, we use botherft exactly like in [52], [40].

Bit res 2 Bitres 2 Demux Fso FP FP PAM Q
25600 s 5 201728
25600 147456) 38928384 7230464 275701761709/1584
e ~~ b S 7230464
ItEnc2 Huff Dec 2 VLD ME ~ S
3760128 % e IDCT
655360 28943360 656884 3760128 34660352 FFT -
A Filter 17091584
Butrer = < IDcT e 28925952
MOCT 3760128 .
o) SieElse: b ADD
201728 ~~ 34660352
ADD ItEnc 1
~— FSa ol 201728
Huff Dec 1 Q sSUM 38928384
g8l 81920
77398016 38928384
81920 34660352 7234560
~ Fs2
~ -~y ~— N L 77008920 .
Bit res 1 MC FS5 VLE Buffer Bit res 1
7234580 e
782336 655360 A e
- W Sync

Sync

Fig. 64 MMS CTG 0 (period: 0.0009765625 seconds)

Bit res 2 Bitres 2 Sl EE0 Lol FP PAM 1Q
147456 201728 38928384
2 25600 > - 7230464 7230464 27570176 17091584
5600 VLD) P
h 3760128 IDCT
. 4 Huff Dec 2 [~ 34660352 Filter FFT MDCT
ItEnc2 ~ 17091584
28945360 656084 3760128 o= 28925952
“—
~
655360 —
h 4 IDCT 34660352 It Enc 1 ADD
= e 201728 Q\b SUM 20 28 gibpy 38928384
3760128
Buffer Fsa 34660352 7234560 - s
L Fs2
=~ ADBY e —~ Fs1 Bitres 1
Huff Dec 1 VLE Buffer
T739pme 77009920
81920 38928384 782336 655360 7234560
~~ ~g ~ i 4 ‘;:
Bitres 1 MC FsSs Sync Sync

Fig. 65 MMS CTG 1 (period: 0.0009765625 seconds)

81

Benchmarks

We present next some of the real applications duiced by Murali et al. with the
SUNMAP tool [71] and the NMAP application mappinig@ithm [61], in the field of
Network-on-Chip research.

Based on their core graphswe derived the Communication Task Graphs for the
following applications: Picture-in-Picture (PIP), MEG-4 decoder, Multi-Window
Displayer (MWD) and Video Object Plane Decoder (\BDP

5.2.2 Picture-in-Picture (PIP)

The core graph for the Picture-in-Picture applmatwas obtained by Murali et al. from
[99]. This application takes two video streams framinput memory (Inp mem) and
superimposes them. The main video stream covergntiee screen of a TV, except a
small window, where the secondary video streamh®wnvs. Therefore, the secondary
video stream is scaled horizontally and verticdligsks hs and vs). Two advanced
address generators, called jugglers, are usedite wdeo data into the memory, at any
position, with an arbitrary shape. They allow mgithe video streams. From the
memory, the Picture-in-Picture video stream is atgm the TV display.

524288 524288
. .l
inp mem 524288 } jug2 524288) mem
524288
-
op disp

Fig. 66 PIP CTG (period: 0.0009765625 seconds)

5.2.3 MPEG-4 Decoder

The MPEG-4 decoder application was obtained fronam@hitecture implementation of
the MPEG-4 decoding system, including data trartspandwidth in MB, available in
[100].

This system is made of: one Double Data Rate (DBfR)chronous Dynamic
Random Access Memory (SDRAM), two Static Random esscMemories (SRAMS),
one Very Long Instruction Word (VLIW) media CPU, eoiReduced Instruction Set
Computing (RISC) processor, an audio Digital SigRedcessor (DSP), a 3D graphics
module (for rasterization), a Context Addressablemdry (CAM) used by the RISC
CPU, a Binary Alpha Block (BAB), an image decomgies module (for inverse
discrete cosine transform and other operations) antlotion Compensation and
Estimation (MCE) module (with up-sampling and padgi A bit stream of input data is
given to the system, which has two outputs: onegtferdecoded audio stream and another
for the decoded video stream.

We observed in [100] that the RISC CPU commungd&@0 MB/s with the
memory and the inverse discrete cosine transfory @60 MB/s, with the same

12 Core graph is a synonym for Application Charaetion Graph (APCG)

82

Benchmarks

memory. However, in the core graph used by Murtlale the two communication
volumes are reversed. Also, it is unclear to us Wwhyali et al. present a two-way
communication between the audio and video out@usagd vu) and the DDR SDRAM.
In our opinion, data should flow only from the DI¥®RAM to the two outputs. In order
to be able to reproduce the research results, wetke graph structure like Murali et al.
did.

sdram rd sram2 rd
409 1556480 ./ 491620 4915200 “Dg2144 454720 1417216 5488640 4086000
2048000
sram1 rd
327680
k h
adsp K bt L8) b
o a:'“ med CPU 327680 4 bab up samp ¥ risc
sram1 wr idet
4096 1556480 491620 4915200 262144 7454720 1417216 5488640 4096000
4096
2048000

sdram wr sram2 wr

Fig. 67 MPEG-4 CTG (period: 0.0009765625 seconds)

5.2.4 Multi-Windowed Displayer (MWD)

The Multi-Windowed Displayer [99] is a more complBicture-in-Picture application.
The video background contains a zoomed-in parhefsimaller video stream (presented
as picture-in-picture). A small square, which maynoved and resized, allows selecting
the part of the smaller video stream that will lm®med-in. Additionally, an Internet
browser is also shown on the display.

This application involves noise reduction (nr)rikontal and vertical scaling (hs,
vs), mixing (jugl and jug2), sharpness enhancen(gjt and graphics blending. The
noise reduction coprocessor accesses the memagrtorm infinite impulse response
filtering.

786432 786432
1048576) hs) vs } Jug‘l 786432

in 524288 524288
524288 o mem3) se) blend

) nr 786432) memz 786432 }hVS 786432)]ng
":"‘“” 524288
mem1 wr mem1 rd
Fig. 68 MWD CTG (period: 0.0009765625 seconds)

5.2.5 Video Object Plane Decoder (VOPD)

An MPEG-4 video stream may be divided into hierar@hlayers. The lowest layer is
called the Video Object Plane (VOP) layer. It cep@ands to a single video stream frame.
The VOP is used to represent rectangular (plame)ds or an arbitrary-shaped plane.

A Video Object Plane Decoder (VOPD) is presentefllD0O]. A Context-based
Arithmetic Decoder (CAD) parses the input strear eirieves the context information
from the shape decoder, through a local memoryebufthen, it writes the output Binary
Alpha Block (BAB) into a local memory. A shape ddeo module reads the computed

83

Benchmarks

BAB and the referenced BABs and calculates theextntalue. The newly calculated
BAB is written into the same memory. The outpueatn obtained by variable length
decoding is sent into a pipeline with inverse s@a@/DC prediction (which uses some
local memory), inverse quantization and inversecigie Cosine Transform. Another
module provides motion compensated VOP reconstmicind padding. Additional
memory is used to keep the reconstructed outputnaoiion compensated prediction
data.

A core graph for this VOPD application has beesppsed by Murali et al. Based
on it, we derived our VOPD CTG. We observed thahpared to [100], where the stripe
memory is accessed only by the AC/DC prediction aedthis memory module is
accessed in the core graph by both AC/DC predidiuh inverse quantization modules.
Our CTG respects the communication from the coeplyrof Murali et al. (so that we
maintain compatibility with their research).

ret ctx calooix ¢ 131072 down samp (131072 ref BAB mem

== g
1217982 p 134072

cAD 131072) g3 men 131072 Y wpsamp) 131072

131072

Varten e 57340} inntes 29650) can) 2965504) cicnci zgassog\iouam 2924544)6& 29176 psamp 2457600 } opree 25605)" g

. 221184 4096000 170048 2564096

stripe mem
VOPmemRD ~ VOP mem WR

Fig. 69 VOPD CTG (period: 0.0009765625 seconds)

5.2.6 H.264 Decoder

Finally, we make our contribution to Network-on-@hienchmarking, by proposing two
new Communication Task Graphs. We obtained the @¥&s based on the research
from [101], where the mapping of a H.264 decoderaomultiprocessor architecture is
presented.

CTG 0 presents a H.264 decoding system that usspartitioning: the video
stream is equality divided onto more CPUs, eachabrieem running a H.264 decoder.

buffer 65536) Loop Filter
A A
65536 49152
11468 : . 11468 ; 286720
11488) buffer) iScan iQuant) iTrans 148E 770048
Ent Dec } reconstr
36864 49152
288720 5 49152 A \y
buffer 36864 } Intra Pred ﬁ 286720 Inter-part dep mem :
Vi i multiple frame buffers
buffer ‘&%PG 41)
i mmem wr) iR
e 949606
286720 im mem rd
MC pred (

Fig. 70 H.264 CTG 0 (period: 0.0009765625 seconds)

CTG 1 presents a H.264 decoding system that usegidnal partitioning: the
tasks of the H.264 decoder are placed onto diffeC&Us.

84

Benchmarks

buffer 352256 } Laop Filter
A r

352256 T

buffer 491620
ags20 } reconstr

770048
1148 11468 491520 491520
Ent Dec 5} buffer } iScan iQuant } buffer) Mrans e A P butter

36864

3

245760 7 buffer 36864

32768

) Intra Pred 4

\a 152712

buffer) 245760 220376
) MC pred { 2293760 multiple frame buffers

11468
1523712

o >
Pred 1523712) buffer

Fig. 71 H.264 CTG 1 (period: 0.0009765625 seconds)

With the functional partitioning approach, the naggs between the decoder tasks are
communicated. With data partitioning, data dependsnamong data partitions are
communicated. It is shown in [101] that, with datatitioning, a significant bandwidth
reduction is obtained.

5.3 Application Characterization Graphs

For all of the above Communication Task Graphshase assigned the tasks to IP cores.
By doing so, we obtained an Application Charactian Graph (APCG) [3], for each
application. All E3S benchmarks plus Picture-intétie had each task assigned to a
different core. For the rest of the benchmarkdeadst two tasks were associated with the
same IP core. We present next only the APCGs & At least two tasks scheduled on
the same processing element (marked by a dottethngde). Note that the
communications between the tasks placed on the Hrw@e are neglected because they
do not generate network traffic.

MMS APCG 0 has 16 IP cores and corresponds to MM&i@unication Task
Graph 0. Application Specific Integrated CircuitsS{Cs) are used for executing tasks
like: bit reservoir, iterative encoding, ME, denmpikxing and synchronization. Digital
Signal Processors (DSPs) run Huffman decoding,retisccosine transform, inverse
discrete cosine transform, quantization, inversantjaation, VLD, FP, filtering, MDCT,
IMDCT and SUM. Memories are used for buffering dffl (0 to 5) tasks. Finally, a
general purpose processor executes MC and ADD.

85

Benchmarks

[i -
" Bitres 1 Bit res 2 Bit res 1 Bitres 2 ,
E - R e o R
81920 25600 81920 25600
s G R St A S
| VLE It Enc 1 ItEnc2 + *Huff Dec 1 Huff Dec 2 !
Do e ..’: : Wl e e i e =t
f 782336 ~. 656384 28943360
| | Ry . gusaseasaa .
L] 1]
VLD { _ 147456 + Demux ")Sync Syne | .IMDCT 'SUM |
., e - L R L]
28925952 855360 ~ ~g55360 723460 7234560
a & ' . i P o
¥ O \ \ Buffer i <
1 e 7230464 . '
9 el " - T ':
34660352 3?60128“3592338._ 7230464 YT PAM .
MR T e, 7 _9:1'!5
ME \ s .
S 2047268, (5SS MDCT ,
34660352 e bl bl
% " PR Esasesneenwn M
P - 0\ e 8 Fs2. + :
W @ @ogs T P~ &
Yamamsn e e sy oo ~. ! I -
34660352 17091584 3760128 77008920 ' | '
/ ! 0atsed | s7eigEoCt 7739016 3892B384
P Y e s st .- e, |
.Q I Q. ."J’Mf"")"' B, [
] (] L] !
"""""""""" : ADD MC Ja0D :

Fig. 72 MMS APCG 0

MMS APCG 1 has 25 cores that execute the taskgided by MMS CTG 1. The
same kind of processors like for MMS APCG 0 areduse

86

Benchmarks

34660352 _ Lo .
fCT IDCT | "‘:"-
L M = m e mmem e e A
38928384 34660352 17091584 / 3760128
AR A @ / | &
| 204728 “efee s 147456 | @
| ' 201728 \
201728 > 4 | ' | ==
- \ VLE Eo IDCT
. : oo 3180128 _ .
| > 782336 - ' e A
! . % _ : ADD'
| 1 [-] N . _E_ ____________ "
1 1 i . 1
' SR Agmm 636384 77390016 38928384
| \ \ Sync : \
77009920 38928384 , 4 : ri==ranons - -,
\ -. : - ' FS4 Fs5 !
% ils s s s s e sese s =l
i i iy =% Pedg-noiIIIIIIIL... .
'FSO FS1 Fs2! + Huff Dec 1 Huff Dec 2 |
. 81920 25600
FP 655360 ! .
;rzsoaijﬂ. | peSWe ... 28943360
- --memesms 1 i |
' ' Bitres1 Bitres 2
7230464 | il PAM | o e S :
e, PN Trep1Te™ .
= = = = == === W - g .
i L] 1 i M
. (Filter MR \ 'SUM IMDCT .
T el TEBABHE == % = == Wi '
28025952 | k 34
¥ §me (7234560 Buffer
............... ,
+ ItEnc1 ItEnc2 ,
"""""" =" " gs5360
81920 25600
i Buffer
. T T R :
« Bitres 1 Bitres 2 !
I =& = & . = =

Fig. 73 MMS APCG 1
MPEG-4 APCG was obtained by grouping the task$ teal with memory

accesses. Thus, “sdram rd” task is grouped withefedwr”, “sraml rd” with “sraml1 wr”
and “sram2 rd” with “sram2 wr”. MPEG-4 APCG hasIP2cores.

87

Benchmarks

' sdramrd sdram wr (: ! (sram2rd sram2wr
: ¥ i A
: - A T 4098000 YA K]
""""""""" 2" 262144 2048000 5488640
Appg ADDgARd ' 7454720 1417216 5484640 Gk
49715200 :
491520,/ 491520 1417216
1556480 P T 4915200 e . 4096000
I 4096 4096 \ sramird ¢ 262144
adsp vu - 4896 ‘ s2r0 rast) ha: up sam| > 4 i
= med CPU : (:327880 RBa idct risc
i

v samlwr)
'

Fig. 74 MPEG-4 APCG

The Multi-Window Displayer APCG was obtained IMPEG-4 APCG, i.e. by

placing on the same core the tasks which do memagys and writes. MWD APCG has
12 IP cores.

786432) 786432
Yhs) vs) jug1 786432

524288 i " mem3 ‘¥4) sg M) blend
J.nr 786432 P mem2 788432) hyg - T8E4s2) jug2
r

524288 gr4288
I ———— ,

mem1 wr memird .

1048576
in

Fig. 75 MWD APCG

From VOPD CTG we obtained two APCGs: APCG 0 hasd®@s and APCG 1
has 12. The Video Object Plane memory tasks ameg@lan the same IP core in both
APCGs. In comparison with APCG 0, APCG 1 groupsertasks from the upper part of
the graph.

gretcb(. down samp (131072 :efBAB mem
1277952 13hor2 131072 131072
CAD) 131072 <Gieag ma 131072 y wsamp 131072

Var Len Dec 573440 } Run Len Dec 2665504) iScan 2965504} ACIDC pred 2965504} iQuant 2924544) iET 2691776) up samp 2457600) VOP rec 25640%):pad

ao014a08

o 221184 4096000770048 2564096

stipemem =~ e :

Fig. 76 VOPD APCG 0

 ret tx calc oix down samp ref BAB mem

! 131072
:CAD crtBAB mem wpsamp 131072

Var Len Dec 573440 } Run Len Dec 2965504) iScan 2965504} ACIDC pred 2965504} iQuant 2924544 ’ iEET 2891776) up samp 2457600) VOP rec 5640%):pad

;221184 1098000 1008 s
stipemem © ieaseadaiieeaceeioe.o .

Fig. 77 VOPD APCG 1

From H.264 CTG 0 we created APCG 0, with 14 cdogggrouping the two tasks
for accessing the intra mode memory.

88

Benchmarks

buffer 65536) Loop Filter
A A
65536 49152
11468 . ; 11468 ; 286720
11488) buffer) iScan iQuant) iTrans 148E } 770048
Ent Dec
reconstr
28f72§ = 5 49152 Friag
5
st) 286720 Inter-part dep mem .
A multiple frame buffers
e 18841
18841 A T :
- 1949696
286720 T ! 4

Fig. 78 H.264 APCG 0

We also obtained an APCG with 16 cores, from HQ84& 1.

buffer 352256
Loop Filter
L >
352200 770048
y buffer 491520)
491520 reconstr 770048
11468 11468 P 491520 491520
EntDec) buffer) iScanQuant ¥ bufter) Mrane el -~ } outer
36864 30768
245760) buffer 36864) \ntra Pred (
A su5760 W 152p712
buffer 5 90"
) MC pred (2293760 multiple frame buffers
11468
1523712
'.)' R LR P LR P PR LR, T
Pred buffer

Fig. 79 H.264 APCG 1

5.4 Summary
We presented in this chapter the CTGs and APCGd wesenodel real applications for
Network-on-Chip benchmarking. We integrated intoiNdep the E3S benchmark suite
and some of the currently most used benchmarkshén NoC research field. Any
researcher using UniMap can now benefit from thesehmarks.

We also contributed with two versions of a H.26dea decoder application.

Our systematic approach should help other researthat work on Network-on-
Chip benchmarking.

89

“To climb steep hills requires a slow pace at fifst

William Shakespeare

6 Optimized Simulated Annealing for Network-on-Chip
Application Mapping. A Domain-Knowledge Approach

We introduced in Chapter 3 Simulated Annealing)(§%e Section 3.3.1) [102], one of
the first heuristic algorithms used to addressNeévork-on-Chip application mapping
problem.

The advantages of Simulated Annealing are givertsbgase of implementation,
its applicability to many combinatorial optimizatigproblems and the ability to give
reasonably good solutions [60]. This algorithm isedi in domains like Biology,
Telecommunications, Geology, Electronics, Medi@nd Engineering [103], [104].

However, the parameters of the algorithm must befaly chosen, since SA can
easily run for a very long time until it gives aitable solution. Because Simulated
Annealing is a very general algorithm, several cési must be made in order to
implement it for a particular problem. These cheiege categorized in [105] as generic
and problem-specific. A generic choice refers tdsSAput parameters: initial and final
temperature, cooling schedule, number of iteratdmse per temperature and stopping
condition. A problem-specific choice is related thee neighborhood structure, which
specifies how the search space is explored.

This chapter presents a domain-knowledge approachNetwork-on-Chip
application mapping problem. We describe an Op®ahiSimulated Annealing (OSA)
[106] algorithm that we designed for the topologacement of cores onto NoC nodes.
OSA uses an application- and network-based expboradf the search space. Using
knowledge about communication demands, the IP caresclustered implicitly and
dynamically. We compare OSA with the above mentibsienulated annealing technique
and with a branch and bound algorithm, too. We $oon algorithm speed, memory
consumption and solution quality.

6.1 Related Work

Simulated Annealing was one of the first algorithused to address the NoC application
mapping problem [40]. The objective was to minimigader bandwidth constraints) the
communication energy for a 2D square NoC mesh Wi¥h routing and wormhole
switching.

Hu and Marculescu compare Simulated Annealing wiBranch and Bound (BB)
approach and they find out that SA is capable mdifig mappings better than the ones
found with Branch and Bound. However, SA has thsadivantage of speed: the
simulation results from [40] show that BB is terfisimes faster the SA.

Both SA and BB algorithms were further developed52], where the mapping
problem is treated in conjunction with the routipgpblem. XY routing is no longer
considered as the NoCs routing algorithm. The mmappmlgorithms are capable of
generating the routing tables for each network nadea deadlock- and livelock-free
manner, using Odd-Even [31] and West-First [30]tirapy protocols. The same
disadvantage of SA emerges from this paper toouldied Annealing is tens of times
slower that Branch and Bound. It is also mentiotied SA required more than two hours

90

Optimized Simulated Annealing for Network-on-Chiplication Mapping. A Domain-
Knowledge Approach

to reach a solution for a 7x7 2D mesh. For a 10x&Q, the time required by SA became
prohibitive: the algorithm did not finish in 40 hrsu

In order to speed up Simulated Annealing for magpiores onto NoC tiles, a
Cluster-based Simulated Annealing (CSA) is propaegd07]. CSA tries to exploit the
application’s communication locality so that it ddentify clusters of IP cores. For each
core cluster, a NoC region is allocated. At higlmperatures, the annealing process
occurs normally: any cores may be moved. Howevéiennthe temperature decreases
enough, the annealing process is limited to thesdrom the same cluster. The idea
behind Cluster-based Simulated Annealing may bsidered a practical implementation
of the clustering proposed by Kirkpatrick et alapted for the NoC application mapping
problem.

The clustering phase determines the initial magpgor the annealing process.
First, the NoC nodes are grouped based on the nuafbzutput links and the overall
distance between them.

The communication core clustering is done in alsimwvay, by considering the
number of output communications and communicatiolumes for each core. However,
the number of core clusters is set to the numbetetérmined NoC node clusters and
also, the number of cores from each cluster musthmiie number of nodes from the
NoC node cluster. Therefore, the clustering is alrivirst by the NoC topology and
secondly by the application.

In the Core-to-Node mapping phase core clustersaasigned to node clusters:
core clusters are ordered by their communicatiomatwls and the clusters that
communicate the most are placed onto the NoC nttd#shave the most output links.
The clustering is static. The purpose of this @trsg technique is to reduce the number
of moves that lead to worse solutions, by restricthe cores moves inside their clusters.
At high temperatures, inter-cluster moves are aldwAt low temperatures, only intra-
cluster moves are permitted.

After the clustering is done, the annealing predesgins. The number of moves
made at each temperature level is not specifieso,Ahe stopping condition is vaguely
defined as a time threshold or a sufficient numdfdeasible solutions found. The initial
and final temperatures are not mentioned but, threber of temperature levels is set to
D, where D is the network’s diameter. Each timegaome is randomly selected for
swapping. For that core, it is identified the maimnetwork distance, d, between it and
the cores from its cluster. If we consider the ating process is currently at step (@.
< D) then, if @ < d, only moves inside the cluster are allowed. @tise, the core is
allowed to be swapped with any core from the nekwdhis means that inter-cluster
moves become less frequently, as the annealingetetyve decreases.

The authors report a 30% CSA speedup over SA lppmg the Video Object
Plane Decoder (VOPD) [61] on 2D meshes with size3 3x4 and 8x8. For the 3x3
mesh, a partial VOPD is used and for the 8x8 miégh)/OPD application is used four
times. Hence, CSA was not extensively evaluatedthetresults show that clustering is
able to reduce the search space significantly &84 S still able to find the same best
solution found by SA. Clustering represents a mobspecific choice for Simulated
Annealing. It considerably improves SA’s speed bseait uses more knowledge about
the NoC application mapping problem than the gdr&raulated Annealing.

91

Optimized Simulated Annealing for Network-on-Chiplication Mapping. A Domain-
Knowledge Approach

We have presented so far how Simulated Annealiag used until now to solve
the NoC application mapping problem. Hu and Marstlleshowed that SA can find
good mappings but, only when the problem size tsyaoy big (up to a 10x10 2D mesh).
They show that SA is too slow for NoC applicatioapping and propose a Branch and
Bound approach that is significantly faster becathse search space is pruned. The
strength of BB resides on how effective is the prgrheuristic, since it tradeoffs speed
with quality of solution. However, a Branch and Bduechnique can start consuming a
lot of memory. Lu et al. showed that Simulated Aaditey can be made faster if the
Network-on-Chip is clustered and then the commuimigalP cores are also clustered.
Core clustering is determined by NoC node clusgerirhis has the advantage that the
application is clustered with respect to the NoCpotogy characteristics. The
disadvantage is that NoC node clustering is detestic and it does not account for the
application to be mapped at all. We believe a nileseble clustering, which may better
adapt to the application, may yield better resiitso, we observe that CSA’s clustering
is explicit, fixed before the annealing procesststa

We propose next an Optimized Simulated Annealingoraghm for NoC
application mapping. Compared to CSA, our algorigpenforms an implicit clustering,
during the annealing process and it is also sicpuifily faster than CSA (and obviously
than SA). We do not cluster the NoC nodes becawesdomot want to restrict the core
clustering process. Only the application cores custered. We influence the IP core
moves during the annealing process, so that themtoneating cores implicitly clump
together.

6.2 The Algorithm

OSA was created by continuing the work of Hu andrddkescu. Their Simulated
Annealing and Branch and Bound algorithms are albkalthrough the NoCmap project
[108]. We have ported their two algorithms, writtenC++, into UniMap (written in
Java). OSA also uses some of the best practiceSifoulated Annealing applied for
assigning tasks to processors [109]. We justify approach by the fact that NoC
application mapping problem is closely relatedh®s NoC scheduling problem [43].

We present next the Optimized Simulated Annealisgugocode, which is
derived from the general Simulated Annealing frdi®d].

92

Optimized Simulated Annealing for Network-on-Chiplication Mapping. A Domain-
Knowledge Approach

Reqguire: M; =0
Ensure: T, = 1
M «— M;
O BitEnergyCost{ M;)
My, = M
Chest = C
Ty = 0.001
=
for i =0 te oo do
it i % L =0 then
=10
end if
T =T, 09.t]
Myew = PO FbasedSwapping(M, T
Chew = Bt EnergyCostiM 00
AC =00 —C
if AC < 0 or NormdnvErpAccept{ AC, T) then
if O < Chew then
Miyat = My
Chest = Crew
=1
else
F=R+1
end if
M= M,ew
O =
else
R=HRH+1
end if
if 7= T and R = L then
breal:
end if
end for
return My,

Fig. 80 Optimized Simulated Annealing

In the following sections, we show how OSA implensetihe most important parts of a
typical simulated annealing algorithm.

6.2.1 Mapping Cost

OSA is energy-aware. It evaluates the mappingsgutiie analytical energy model
presented in Section 3.1.3.2.

6.2.2 Annealing Schedule

There are a lot of annealing schedules in liteeatwtraight, geometric, reciprocal,
logarithmic, fractional, Koch etc. [103], [104],J%]. We have chosen for OSA the
geometric annealing schedule because this is tlst nsed and recommended one [105]
and because the general SA implementations useneh

The geometric annealing temperature scheduleetetire temperature at iteration
i as:

T=T, mM ,.q0 (0

93

Optimized Simulated Annealing for Network-on-Chiplication Mapping. A Domain-
Knowledge Approach

To is the initial temperature arglis the geometric progression ratio. We set q =f@9
OSA because this value is also used in [102], [EHO®] usuallyg is set between 0.9 and
0.98 [109].L is the number of iterations per temperature level.

OSA uses an initial temperature set to 1 by defaut, this is considered a
parameter of the algorithm. The final temperatsréxed to 0.001. It is correlated with
the acceptance function (see Section 6.2.4). Hl Marculescu’'s SA starts from a
temperature of 100 and the final temperature isonanded (their algorithm uses another
stop criteria).

6.2.3 Number of Iterations per Temperature Level

The general Simulated Annealing sets 100(NxN¥, where NxN represents the size of
2D mesh NoC. For example, for a typical 4x4 2D mé&h tries L = 25600 mappings at
each temperature level. These mappings are randgemerated, from the current
mapping, by interchanging two cores, or by pla@rgpre into an empty NoC node. If we
consider that SA runs for 100 temperature |eVeltis leads to 2560000 mappings
generated. An Intel XEON processor from our HPQesyg[70] evaluates a mapping in
~0.04 ms. Thus, for this example, SA would rundbout 102 seconds. The algorithm’s
speed increases with the square of the NoC topdiagy For the same example but with
a 10x10 mesh, SA would require more than one hauming time. However, the general
SA algorithm is not bounded by the number of terapee levels, and we have observed
that it easily runs for more than 150 levels of penature for a 4x4 2D mesh. We argue
SA’s number of iterations per temperature levelgeiy high and it has a deep impact on
its speed. Also, we observe that this number iy &H0C aware. It is by no means
application aware. For example, mapping 15 or ¥8<on a 4x4 2D mesh uses the same
L.
OSA uses the following relation to compute the namobf iterations for each

temperature level:
n(n-1 n—-c-1)(n— 2n- ¢l
Losa= Co = n &= (2)_{ 02)(QZ({)
nis the number of NoC nodes anés the number of cores to be mapped.

This number of iterations per temperature levetesgnts how many distinct core
swappings are possible for a given NoC witmodes andt cores placed onto these
nodes, so that at most two cores change positempared to the initial mapping.

Therefore, the first core may be moved from itsenodto other (n — 1) nodes.
The second core may be moved from its node onter dth— 2) nodes (it is swapping
with the first core has already been counted). third core can do (n - 3) swappings and
so on until the last core, which can be put ontednhnodes.

The sum of all these single step possible swappings

G, S, & _nin-1) (n-c-1)(n-c
thereforeZk:;k—;k: (2) _(2)():LOSA.

,.c,n0N", n> ¢, where:

k=n-c

13 This is more than possible because thé"8ément of a geometric progression with ratiodh# initial

element 100 £00D.9*°** [J0.00295

94

Optimized Simulated Annealing for Network-on-Chiplication Mapping. A Domain-
Knowledge Approach

, _ n(n—1) n
It may easily be observed thatax{L,s,} B L osamnax -

number of cores to be mapped is equal with the murobNoC nodes.

SA has L = 100(NxN) Because we noted the number of NoC nodesnyithe can write
thatLsa= 100A. It is obvious thatl ., < L, < Lg,- Also, in terms of algorithm speed,

This happens when the

OSAﬂax

we note that OSA speedup over SASs 1—L°;SA => r!ir>n S= rIwirp (1— nz((r; ?j =99.5%.

SA
We considered fotosa the worst case, given hy = c. This speedup is in perfect
concordance with our further experimental results.
It can easily be observed thagsa counts all mappings that are obtained by making a
single modification (core swapping) compared todghen mapping (otherwise, the total
possible mappings are of coursE, > L.g,). All the mappings that derive from a given

mapping in this way are what we call the mappingisediate neighborhood. We can
make an analogy with Markov chaingsa can be associated with the number of possible
single step transitions from a Markov chain, wha#scribes the mapping state space
exploration performed by OSA. Later on, we will shbow OSA assigns probabilities
for each single step transition, using the cona#pProbability Distribution Function
(PDF).

Becausen is NoC topology characteristic ard is application characteristic,
OSA'’s number of iterations per temperature levélagh NoC and application aware.

Returning to the example with the 4x4 2D mesh anSiraulated Annealing
algorithm that runs for 100 temperature levels,camputelosafor mapping 16 cores to
be 120. This means a run time of 0.48 seconds. @mdpwith how much time the
general SA needs (102 seconds), we get a speedupDb3%. For the 10x10 2D mesh,
OSA’sL is 4950. This means a runtime of 19.8 seconds.spkedup in this case is of ~
99.5%. Obviously, if the number of cores to be nepis less than the number of nodes
from the networklosabecomes smaller and the speedup higher.

Some criticism to this approach can be that althobhgge speedup can be
obtained withLosa OSA might find worse solutions because it doss kexploration of
the search space. We argue that the general S&asaly repeat a lot of moves without
finding better solutions so that the search cadrben to qualitatively better solutions.
Additionally, OSA considers the initial temperat@garameter, which can be increased
so that the algorithm does more exploration. We suiktain our assessments through
simulations.

6.2.4 Acceptance Function
Both general SA and CSA algorithms use the Metie@aceptance probability function:

AC
P(AC) =e KT, Bolzmann’s constantK] is set to the current mapping cost in the
implementation of Hu and Marculescu (and it is wtsfeed in CSA’s case). OSA
however uses the normalized inverse exponentig@pance function because it is shown
in [109] that it yields better results when it ised for task scheduling. This function is

defined a$(AC) = 1

- The practical difference between the two functican be

1+e &

95

Optimized Simulated Annealing for Network-on-Chiplication Mapping. A Domain-
Knowledge Approach

seen when we considaC = 0. The exponential form always accepts a nepping that
is equally good compared to the current mappingereds the (normalized) inverse
exponential form accepts such a new mapping wi@% probability.

OSA’s acceptance function performs cost normatmaby dividing the cost
variance AC) with the initial mapping cost ¢& This allows the temperature T to be
independent of the cost functiom:OJ (0] . Note that OSA sets the initial temperature to
1 and the final temperature to 0.001. However, @8dws the initial temperature to be
higher than one. With respect to the normalize@ilis® exponential function, this would
mean the initial cost is artificially increased.

Using the normalized inverse exponential accegtduaaction, the temperature T

can be written ag: = —L. For the final temperaturéC = 0.001C, Ir{1 - 1J :

c,In (1—1j P
p

Therefore, the cost of a new mapping that is wtnaea the current mapping is accepted
with a certain probability until it varies with gn0.5%G from the cost of the current
mapping. Since OSA’s cost function represents gneonpsumption, we can conclude
that OSA considers the system frozen when the greengsumption varies with less than
0.5 percent.

6.2.5 PDF-based Swapping

The move function determines how Simulated Anngaérplores the search space. In
[40], [52] the move is a random swap: a core iededd randomly and this core is then
swapped with another randomly selected core (antyempde can also be used). Note
that a random swap move has two steps:
1. select a core to be swapped;
2. select another core (or empty node) for the exabang

The same random swap is used in [107] but, indhse the moves are restricted
at cluster level when the annealing temperature degseased sufficiently. While the
simple random swap is by no means problem awaeeCBA random swap is indirectly
aware of the problem because it restricts a rancmwve to the cluster of the core to be
moved.

While both approaches select the core to be svadagpelomly, OSA does not use
a uniformly random probability when determining there to be moved. Instead, it
adapts the variable grain single move (based ohaibty densities and used for task
mapping [109]) into a variable grain swapping mavkich uses two Probability Density
Functions (PDFs). OSA builds a Probability Densitynction (PDF) for each core, based
on the amount of data it communicates. This leadsetter chances for selecting a core
that communicates more data than a core which conuaiies less data. As the annealing
temperature decreases, the probabilities uniforrelyualize. Therefore, at low
temperatures, all cores have a quite equal changettselected for swapping. Through
this approach, OSA uses domain-knowledge (dynarmaracteristics) to explore the
search space. The following function is used:

P[SelectedCore | E 1 +I(M— }J, where:
T, \ totalToComm

- cis the number of cores to be mapped,

96

Optimized Simulated Annealing for Network-on-Chiplication Mapping. A Domain-
Knowledge Approach

- T and T are the current and initial temperatures;

- totalToComnis the total amount of data communicated by theaaks;

- coreToCommis amount of data communicated by ciore
The second core used for swapping is selected bguating for the communication
volumes between the core to be swapped and thefréise cores. Another Probability
Density Function is built for each core. It is daniwith the one above but, it does not
consider only the data communicated by the coredisib the data received by the core.
Also, this second PDF is not temperature dependeath core gets such a PDF
associated before the annealing starts. This PDF idefined

asHFc cl= comm)
"7 777 totalComn
- comm) is the communication volume between coaadj (this value is positive if
corei sends data to cojgeor corg sends data to corgotherwise, it is zero);
- totalCommis the communication volume of the entire appiarat
According to the PDF described above, the seconel isoselected for swapping. Then,
OSA searches, in a uniformly random way, for adireighbor of the second selected
core. This one will be swapped with the first seddccore. This approach tries to make
communicating cores to attract each other, to efudtemselves, in a natural manner.
OSA'’s move function performs an implicit clusteriafthe communicating cores, using
a stochastic approach.

Compared to CSA, our algorithm clusters the catgsamically, during the
annealing phase. OSA does not work with predetexdhiriusters, and it also does not
cluster the NoC nodes. Network-on-Chip node clusers not needed because OSA
looks in the NoC node’s neighborhood.

We call this kind of move &DF-based swapping mavat every temperature
level, OSA performs exactlyosa PDF-based swappings.

, Where:

6.2.6 Stopping Condition

OSA uses the stopping function recommended in [1@8Lpled temperature and
rejection threshold. The annealing process stopsnwthe temperature goes below the
final temperature (0.001) and the lastatried mappings did not lead to a solution better
than the best solution found so far. Therefore, Q8#s for a determined number of
annealing temperatures, which can be exceeded Wiiter solutions are found. We note
OSA has a form of elitism because, during the emtinning process, it stores the current
best solution. This is another difference from aegal Simulated Annealing technique.

Because OSA uses a geometric annealing schedelleamwrite thal, =T,q"™,
where:
- To andT; are the initial and final temperatures;
- g=0.9is the geometric progression ratio;
- nis the number of temperature levels.

T
If we consider thal, = 1, T; = 0.001 andj = 0.9, then OSA runs for approximately n =

65 temperature levels. Note thais independent of the problem size. It can beciased
if better solutions are still found, after the finemperature level has been reached, or if

T
The number of temperature levels can thus be esgdessn = {Iogq f J +1.

97

Optimized Simulated Annealing for Network-on-Chiplication Mapping. A Domain-
Knowledge Approach

the initial temperature is raised. Obviously, thatial temperature must grow
exponentially so that increases linearly.

Because OSA’s stopping condition determines a mundf annealing levels
independent of the problem size, the runtime ofadgorithm is quasi-constant when the
algorithm is run more than once in exactly the saowditions. This property does not
apply to Hu and Marculescu’s Simulated Annealing.

6.2.7 Summary

OSA starts from an initial mappiny/() that is by default randomly generated (obviously,
the initial mapping can also be specified). Anotimgut parameter can be the initial
temperatureT,, set to 1 by default. The mapping’s cost is olg#dinsing the bit energy
model from [40]. We use a standard geometric ammgaichedule, with.osa annealing
iterations per temperature level. This number spoeds to how many mappings may be
obtained from the current mapping, by moving oneecdrhe move function is a
swapping based on Probability Density Functions. UWge the normalized inverse
exponential acceptance function because this iotleerecommended by [109]. OSA
stops when the final temperaturg& € 0.001) is reached and the number consecutive
rejected movesR, reachesLosa This corresponds to the coupled temperature and
rejection threshold stopping condition proposedl@9]. While in [L09]R counts how
many moves were rejected since the last acceptee,mo OSA we us® to count how
many moves were rejected, per temperature leveleshe last best mapping was found.
This means that while OSA requires no best mappingpe found during an entire
temperature level, the general Simulated Annediliogh [109] needs to wait until the
number of unaccepted moves, counted from the lastarcepted, reachés OSA’s
stopping condition is therefore more coupleditthan toR. This makes OSA’s number
of iterations to be independent of the NoC topolagd its size. Since we consider that
the energy variations are small enough when thed femperature is reached, we believe
our way of computingR is more suitable for a Simulated Annealing applied\NoC
application mapping.

Currently, OSA works only with 2D mesh topologiest,bit can be adapted to
work with other NoC topologies, too. Like Hu and fdalescu’s SA, OSA is also capable
to generate the routing functions, in a deadlockt lavelock-free manner, and to check if
the obtained mapping meets the bandwidth consstaint

Compared to the general SA, OSA determines how nitargtions to make per
temperature level by considering the mappings’ madghood size. Using Probability
Density Functions, OSA performs an implicit and aiymc core clustering (CSA’s
clustering is explicit and static).

6.3 Simulation Methodology

This section presents the simulation methodologgdus evaluate our Optimized
Simulated Annealing. OSA is compared to the NoCliegipon mapping algorithms
mentioned above: Simulated Annealing and BranchBmahd [40]. We also compared
our results with the ones reported for Cluster $ated Annealing [107].
Our methodology is mainly determined by: the benatks used for mapping, the
Network-on-Chip architecture and how and in whatditons we run our simulations.
We evaluate OSA using all the benchmarks present€tiapter 5.

98

Optimized Simulated Annealing for Network-on-Chiplication Mapping. A Domain-
Knowledge Approach

We have considered the most common Network-on-@fapitecture: a 2D mesh
with regular tiles, using wormhole switching and XaUting. The NoC topology size is a
simulation parameter. The NoC link bandwidth was$ sefficiently high so that
bandwidth constraints are always met. The energyired to transfer a bit of data was
taken from NoCmap. The values were determined 85 fim technology [52]: a NoC
router needs 0.284 picoJoule for processing oneobitata, the link needs 0.449
picoJoule to transmit it. A buffer read operati@guires 1.056 picoJoule per bit and a
buffer write takes 2.831 picoJoule.

Three NoC application mapping algorithms were usednap the core graphs
(benchmarks) onto 2D meshes: Simulated Annealirginized Simulated Annealing
and Branch and Bound.

For each benchmark, the size of the network whasskw as possible to include
the number of cores from the benchmark. The folhguable presents the NoC 2D mesh
size used for mapping each benchmark.

Benchmark #cores # NoCnodes NoC size
auto-indust 24 25 5x5
consumer 12 12 4x3
networking 13 16 4x4
office-automation 5 6 3x2
telecom 30 30 6x5
PIP 8 9 3x3
MPEG4 12 12 4x3
MWD 12 12 4x3
H.264 (CTG 0) 14 16 4x4
H.264 (CTG-1) 16 16 4x4
VOPD (CTG 0) 16 16 4x4
VOPD (CTG 1) 12 12 4x3
MMS (CTG 0) 16 16 4x4
MMS (CTG 1) 25 25 5x5

In order to increase the simulations’ accuracyhaee mapped each application
1000 times, with each algorithm. For each simuigtibe initial mapping was randomly
chosen. To make the comparisons fair, we havehsetséed of the random number
generator so that all algorithms start from the egmint in the search space, every
simulation. Thus, simulation 1 works with seed imuation 2 with seed 2, ...,
simulation 1000 with seed 1000. We note OSA udewear congruential random number
generator [87], the same used by SA. A true randomber generator could prove more
useful but, we consider this aspect beyond theesobfhis work.

For each mapping, we recorded the solution (he. mapping), its cost (in
pJoule), the runtime of the algorithm (user CPUelilmnd the average heap memory
consumption. We did not use any application bantwednstraints. Our experiments are
fully reproducible because the algorithms and tineukition methodology are part of
UniMap [69], an open-source project.

99

Optimized Simulated Annealing for Network-on-Chiplication Mapping. A Domain-
Knowledge Approach

6.4 Experimental Results

In this section, we evaluate our Optimized Simwafenealing by comparing it with
Simulated Annealing and Branch and Bound. The e is three folded. We account
for execution runtime, memory consumption and saftuguality. We show next only the
most representative results. More detailed resuésavailable in [110], [111].

We begin with a runtime comparison between OSA®AdNd respectively OSA
and BB. The speedups represent an average of 0t rb@time speedups obtained for
each benchmark.

: <)
o \b: e
-:§3' 2) q;b ng A‘ &
of o @
99% "
»E
98% ;
e
o
97% ofp
96%
95%

W 08,0 0"‘ o ch 0 A cE
oD uw AR RSB

Speedup [%]

Benchmark
Fig. 81 OSA speedup over SA

The chart above clearly shows OSA is much fastn tHu and Marculescu’s Simulated
Annealing. We have obtained a 98.95% speedup omagee This is in perfect
concordance with our theoretical speedup expeastimm section 6.2.3. The “lowest”
speedups are arffice-automatiorand PIP, the benchmarks with the smallest number o
IP cores. We justify this significant speed gaininhyaby the way OSA computes the
number of iterations per temperature level. Thisiber takes into consideration the NoC
size, the number of cores to be mapped, and itchrfrower than the number used by Hu
and Marculescu.

The following chart shows how fast OSA is compare8ranch and Bound.

100

Optimized Simulated Annealing for Network-on-Chiplication Mapping. A Domain-

Knowledge Approach
3\? s o a? =]
100% v 2 o S e 2
TN & &8 & ® S &S
50% cce T o g’ =+ E's- c"; 2w y &} =
< SR = SBams
0% ¥ ' ‘ o
(=]
—— 0)
T 50% R
)
a -100% i
- ey 8 f"?" 2
o -150% o5 ;
h o
S 200% “‘.

-250%
\

W00 @ P ch ¢ c2
d@\ wf‘%\ o %?e % é?\%o% c% g@p
oW

Benchmark

Fig. 82 OSA speedup over BB

It can be seen that OSA is slower than BB by ~ 2dfocaverage. However, for half of
the benchmarks, OSA is faster. Compared to BrandhBund, our algorithm obtained
poor runtimes on MPEG4 (more than twice slowerR@4. (~ 1.5 times slower in both
cases) and slower but similar runtimes for Riffice-automationVOPD (CTG 1) and
auto-indust We also observe OSA was faster on the biggesthmearks: 25% speedup
for MMS (with 25 cores) and ~ 41% speeduptidecom(30 cores).

Next we show how OSA’'s memory consumption is, comgpao the memory

consumed by Simulated Annealing and Branch and &oun

ol,a olle

olo °|l°
WU
alo b;q’ '1-
50% ! -
30%
g 10%
E -10% .
o 30% q,Q N,\u\ qﬁ%eﬂ
%‘ -50% %‘5
E
g -TO“? —
W8 GoC o Q C;;b' 0 Q}%
WOt @ 139 ¢
o 0,\“?}*-5, \:?pf; \o© \bﬁ- O? 0? o%o%o%
o%\°°
Benchmark

Fig. 83 OSA compared to SA in terms of heap memoopsumption (a positive value means OSA
consumes less memory)

Simulated Annealing consumes less memory than O8&nwnapping the benchmarks
with more than 16 cores. OSA manages to beat Sgewvaral benchmarks with 16 cores
but, on average, Simulated Annealing consumes witB% less memory than our

Optimized Simulated Annealing.

101

Optimized Simulated Annealing for Network-on-Chiplication Mapping. A Domain-
Knowledge Approach

However, compared to Branch and Bound, OSA taléHeabit less memory on
average. This is shown in the next chart.

o oo
o‘p N D
50% em b‘Qq,"bcbrb
30%
. 109} ,\rb h% 1lt! OI'LQ
=2 o 2 0f 53
= 10%
@
> Hu Q-
T 30% o2
‘g' -50%
£
% -70%
0 4ot o Q‘? ©3
0‘-\ ""‘ ¢ R”, c} X c,\
5 00%0'2%0 m%”‘o? oF \N @N* %P

S

Benchmark
Fig. 84 OSA compared to BB in terms of heap memoonsumption (a positive value means OSA
consumes less memory)

Actually, this chart points out the tendency of irla and Bound to grow its memory
requirements as the problem size gets higher: G@Buwmnes with more than 33% less
heap memory than BB, dalecom

Now we present the quality of the solutions fougdhe three algorithms. We are
interested in solutions with the smallest cost fmsdecause the cost function we used
estimates the energy consumed by the Network-op-Chi

The following chart compares the mappings foundSgy and OSA. For each
benchmark, we evaluate the 1000 mappings returgeithéo two algorithms and count
how many times one algorithm retuned mappings béttarked with “<” in the chart’s
legend) than the other one. Cases when both digwmireturned mappings with exactly
the same cost are marked distinctively.

100%
% 81 (8] (8] 8 [8 :
80%
70%
60%
50%
40%
30%
20% ©
% |2 1= 8 |8 |8 -
o 2 el el Lol [al
—
o

o <)]
o netwgiking o telagom MPEG4 H.264 ctg 0 VOPE’ctg 1 MMS ctg O AVERAGE
consumer office-automation PIP MWD H.264 ctg 1 VOPD ctg 0 MMS ctg 1

0.20%
0.00%
0.00%
1.3p%
0.00%
0.7p%

Benchmark

B SA<OSA OSA=0SA BOSA<SA

Fig. 85 OSA mapping costs, compared to SA mappiosts

102

Optimized Simulated Annealing for Network-on-Chiplication Mapping. A Domain-
Knowledge Approach

We notice that both algorithms find the same “stution”, after all 1000 runs, for
benchmarks:networking, office-automatioand PIP. For the last two of these three
benchmarks, we confirm the solution is optimal liseawe applied an exhaustive search.
Overall, OSA finds worse solutions than SA for 6tbé 14 benchmarks used in our
simulations: MPEG-4, MWD, H.264 (CTG 0), MMS (CTQ, MMS (CTG 1) and
consumer

We have also found out that SA and OSA always fir@lsame best solution. However,
Branch and Bound fails to obtain a mapping thatssoames at most like the best mapping
found by SA and OSA in two cases: for MMS (CTG thje energy lost with BB’s
mapping would be 0.1 % and fauto-indust the energy loss is ~6%.

We measured the difference between the worst astirhappings found for each
benchmark by SA and OSA. With our Optimized SimedafAnnealing, the variation
between the worst and best mappings was not hitjaer 8%. However, with SA we
obtained the highest variation to be 70% for MMST@C 1). For the rest of the
benchmarks SA did not varied with more than 6%.l&kag MMS (CTG 1), the SA
average variation was 1.51% and the OSA averagaticer was 2.56%. If we also
consider MMS (CTG 1), SA had an average variatibb.85% while OSA’s value was
less than half (2.53%). We conclude that the vianat between the best and worst
mappings are comparable for SA and OSA.

Fig. 86 shows how many times the best solutionemiley all three algorithms,
was found by each one of them.

100%
90%
80%
70% - F
60%
50%
40%
30%
20%
10%

00/0 X A
S T T e
OB ROC o
B\S@’\ cg‘(& {&-:i?a&o@ \e'\ﬁ'

S

7l
/
'
7
7
7
ﬁ =
g
1
2
7
7
7
7

A saA B osA EBB

Fig. 86 Best solution percentage

This chart shows that OSA finds the best solutiooremoften than SA for several
benchmarks:auto-indust telecom MPEG4, H.264 (CTG 0), VOPD (CTG 1). BB
outmatches OSA for the MMS benchmarks, VOPD (CTAHR264 (CTG 1), MWD and
consumerAnother observation is related to BB: it finde thest solution with probability
1 for all benchmarks, exceputo-industand MMS (CTG 1).

We also averaged the quality of the 1000 mappirggsbpnchmark. Branch and
Bound is the algorithm that, on average, givesrttapping with the smallest energy
consumption. It fails just orauto-industbenchmark, where OSA provides the best

103

Optimized Simulated Annealing for Network-on-Chiplication Mapping. A Domain-
Knowledge Approach

average mapping cost. Optimized Simulated Annealtigeves for MMS (CTG 1) a far
better average cost compared to Simulated Anneafirage than 34% energy gain is
obtained with OSA. For the rest of the benchmaties differences between OSA and SA
are less than one percent. Compared to BB, OSAiges\solutions that are worse with
no more than 2.5% on each benchmark, exeepb-indust where OSA is better with
more than 6% than Branch and Bound.

Using 1000 simulations per benchmark, we have pusly shown that the
percentage of better solutions was lower for OSantlior SA on six benchmarks:
MPEG-4, MWD, H.264 (CTG-0), MMS (both CTGs) acdnsumerWe present here our
attempt of increasing OSA’s quality of solution ibgreasing the initial temperature. We
applied this technique on the benchmarks menti@exe, with the purpose of getting
OSA’s percentage of better solutions over SA’s @etage. Increasing the initial
temperature allows OSA evaluate more mappings.,Also higher the temperature, the
bigger is the probability to accept “bad” movesidgrthe annealing process.

Through this technique the quality of solution four Optimized Simulated
Annealing got better, matching SA’s quality of 4@u i.e., OSA’s percentage of better
mappings overcame the corresponding SA percengtgke.we had one exception: we
were unable to obtain the desired outcome for MNESG 1). We disregard this
undesired result due to the fact that in this casegverage, SA consumes with more than
34% more energy than OSA.

Note that we have increased OSA'’s initial tempeemexponentially because, due
to the OSA’s geometric annealing schedule, an esital increase of temperature leads
to a linear increase of the number of temperatwels.

The following table presents OSA’s speedup over BAerms of runtime, and
the initial temperature required by OSA to beat SA.

Benchmark Speedup (%) Initial temperature

MPEG4 97.51 1E+10
MWD 96.76 1E+10
H.264 (CTG 0) 99.18 1E+02
MMS (CTG 0) 97.41 1E+17
MMS (CTG 1) 61.40 1E+107
consumer 98.91 2E+00

If we ignore MMS (CTG 1), we see that the speedemained high even with the
increase of initial temperature.

In order to illustrate how important OSA’s clusteyitechnique is, we present
next a comparison between OSA with and without teliisg. The single thing that
distinguishes OSA without clustering from OSA (wilustering) is that, in the first case,
the simple random core swapping is used, withoutrastrictions.

The following chart shows how frequently the bssttion is found.

104

Optimized Simulated Annealing for Network-on-Chiplication Mapping. A Domain-
Knowledge Approach

100%
90%
80%
70%
60%
50%
40%
30% -
20%
10%

0%

et

NN c;@
P @&@ﬁg&o @ WO
C

S

OSAwlo E 0SA
clustering

Fig. 87 The influence of OSA’s clustering on begilgtion percentage

For all benchmarks, OSA with clustering finds thestbsolution more frequently than
OSA without clustering. More than this, we obsewignificant differences for the
benchmarks mapped onto the 4x4, 5x5 and 6x5 2D r&xBs. It is important to
mention that the two OSA variants find the same belution for all benchmarks, except
MMS (CTG 1). In this case, the best solution folaydDSA w/o clustering is with 0.02%
worse. On average, the best solution percentag®$# with clustering is 18% higher
than for OSA without clustering. Therefore, our lmp and dynamic clustering
technigue helps OSA to find the best mappings rotien.

The next chart shows how much energy is consumealverage by OSA without
clustering (compared with OSA using clustering).

1, 4%’0 o‘||0 '\?P?"P
1,2%
< 10% W &°
3 0,8% c).lla 0\0 \o ‘Jﬁ;\a
Q 06% o bP
m a,
= 0,4%
S 02% °‘~° °‘~° \“
§ 0,0%
AN ‘9 G:Q‘
(\6 00 ‘? d. A0S
o d\ 'L@’ 1'%& R o? @\\“\1\\%’%%?}
'6\‘*
Benchmark

Fig. 88 Average energy consumed by the mappingsioietd with OSA without clustering

It may be noticed that for each benchmark OSA witt@ustering found mappings that
consume additional energy. The clustering technlgads to lower energy consumption
with more than 1% in some cases. OSA with clusteaiways gives better average
results than OSA without clustering.

105

Optimized Simulated Annealing for Network-on-Chiplication Mapping. A Domain-
Knowledge Approach

Finally, we present the simulation results on bigg® meshes. We used four
instance¥’ of the VOPD benchmark with 16 cores and obtaindmerachmark with 64
cores. Using SA, OSA and BB, we mapped it on an@8nesh. SA was run ten times
and OSA and BB run 100 times.

We obtained an average running time of ~ 12.65 fh@oer simulation) for SA.
OSA ran for approximately 155 seconds, while BBuremf just ~ 114 seconds.
Averaging the results from the 100 runs, OSA wa6% Jlower than BB. Still, OSA
runtime is significantly lower than CSA'’s runtin®750 seconds [107].

OSA consumes with approximately 39% less memory tBench and Bound.
During the 100 simulations, OSA’s peek memory comstion was 37.3 MB, while BB
required a maximum memory of 85 MB.

The best mapping was found by Simulated Annealldgwever, OSA’s best
mapping is only ~ 0.7% worse. Branch and Bounddsfiacbest mapping that consumes
around 64% more than the best mapping found byASAraging the 100 mappings done
by OSA and comparing them with the ones obtainett BB, we have observed that
Branch and Bound obtains on average a mapping-@@8t worse.

We have aggregated all the E3S benchmarks usad iprevious simulations and
obtained 84 cores that we mapped onto a 10x9 2.negmin, SA run 10 times, while
OSA and BB run 100 times.

SA required a very big time to run one simulatiapproximately 70 hours. OSA
ran for approximately 526 seconds, while Branch Bodnd needed only 380 seconds.
Averaging the results from the 100 runs, Optimi&ichulated Annealing was ~48%
slower than BB.

OSA consumed approximately the same of memory Bramc Bound required.
During the 100 simulations, OSA’s peek memory comstion was 62 MB, while BB
required a maximum memory of 71 MB. We believe Braand Bound manages to keep
the memory consumption not growing exponentiallypbyning most of the search space
(we observed BB, in several simulations, to prub&8o 93% of the explored search
space).

Averaging the 100 mappings done by OSA and comgahem with the ones
obtained with BB, we have observed that Branch Bodnd obtains on average a
mapping cost ~76% worse. Simulated Annealing fotlredbest solution but, it is better
than OSA’s best solution by only 0.09%.

Using the H.264 (CTG 1), MMS (CTG 0), MMS (CTG MPEG4, MWD and
VOPD (CTG 0) benchmarks, we have obtained 97 ctiraiswe mapped onto a 10x10
NoC. Because of the huge running time SA needeth&pping the previous application,
we simulated these application with 97 cores ontyh WSA and BB (both were run ten
times).

Optimized Simulated Annealing run on average axprately 15.9 minutes per
simulation. Branch and Bound needed only two thotishis time: ~15.44 minutes for
each mapping simulation (OSA is only 3% slower tB&).

Branch and Bound consumed around 40 MB of memarg &ptimized
Simulated Annealing required approximately 45 MB.

14 Like in [107], because applications with a highminer of cores are lacking and because we preferred
using real applications instead of randomly genmegatore graphs (like in [40], [52])

106

Optimized Simulated Annealing for Network-on-Chiplication Mapping. A Domain-
Knowledge Approach

Once more, OSA found every time mappings bettan tthe ones found by
Branch and Bound. Averaging the 100 mappings dgn®@3®A and comparing them with
the ones obtained with BB, we have observed thah@r and Bound obtains on average
a mapping cost ~76% worse.

By combining all non E3S benchmarks (PIP, H.268/8%4, VOPD, MWD,
MMS), we get a benchmark with 131 cores, which vegped onto a 12x11 Network-on-
Chip. OSA and BB mapped this benchmark ten times.

OSA required, on average, approximately 51 minatepping this application.
Branch and Bound was ~15% faster: it needed owlyrat 44 minutes, on average.

In this case, OSA consumed less memory, 36 MB,lewl8B memory
requirements were 14% higher.

Optimized Simulated Annealing found each time appiag that consumes
significantly less memory. On average, OSA’s solui need 79.4% less memory than
BB’s solutions.

Finally, we combined all of our benchmarks an oigd an application with 215
cores. We used OSA and BB to map it (ten times) art5x15 NoC.

Optimized Simulated Annealing run for 8.4 houns,average. OSA consumed on
average 265 MB of memory, for each mapping.

Branch and Bound run on average 3.77 hours fdr sepping. This is more than
half OSA’s runtime. Memory consumption was alsan#igantly lower: only 158 MB.
However, we obtained no solution from BB, aftertalt mapping. All mapping attempts
will Branch and Bound failed. No suitable solutismas found because, each time, the
algorithm pruned more than 98.7% of the searchespélus severe pruning did not allow
BB to finish mapping the application. This leavesta believe that Branch and Bound’s
memory consumption does not grow exponentially the,quality of solution is heavily
affected, up to the point where the algorithm duoatsgive any solution.

6.5 Summary

We have presented in this chapter an Optimized &btedi Annealing (OSA) for
Network-on-Chip application mapping. Like Hu andmgldescu’s Simulated Annealing,
OSA is energy and performance aware. OSA uses appkcation knowledge that helps
it at better exploring the search space. Like @hest-based Simulated Annealing, OSA
also performs clustering but, implicitly and dynaslly, not explicitly and statically.

OSA proved to be much faster than SA. We have obthan average of 98.95%
runtime speedup while the quality of the mappinyitsan is not lost: OSA managed to
find the same best solution found by SA. On theé#es benchmark, we found OSA is
99.97% faster than CSA.

We showed OSA is feasible for NoC meshes with Bigher than 10x10. OSA is
also comparable to Branch and Bound in terms of oangroonsumption and speed. OSA
was able to map 97 cores on a 10x10 2D mesh madiower by only 3% than the time
required by BB. However, Branch and Bound fail$innd better solutions oauto-indust
and MMS (CTG 1) benchmarks. More than this, the pivap solution given by BB is
70% worse than the one found by OSA, when mappingsconto an 8x8 2D mesh, 76%
worse on 10x9 and 10x10 2D meshes, and 79% worse Ii2Zx11 2D mesh. We also
found that Branch and Bound is unable to map adicgtion with 215 cores, onto a
15x15 NoC, because more than 98% of the searcle spacuned.

107

“You have your way. | have my way.
As for the right way, the correct way, and the amyy, it does not exist.”

Friedrich Nietzsche

7 Designing Domain-Knowledge Evolutionary
Algorithms for Network-on-Chip Application Mapping

Evolutionary Computing (EC) [112] is a part of Autial Intelligence (Al) inspired from
the evolution process encountered in Biology. Téeristic algorithms from this field of
research address NP-hard optimization problems bgns) of natural selection and
evolution mechanisms. The search space is filleth wandidate solutions, called
individuals.

A typical Evolutionary Algorithm (EA) starts with population of individuals
(usually randomly generated). An objective (fitnefisiction is used to evaluate each
individual. Then, based on the individuals’ fitheasselection mechanism decides which
individuals participate in the next phase: reprdidunc Crossover and mutation are the
typical reproduction operators that take parentividdals and produce offspring
individuals. Through recombination, a new populati® formed. It contains individuals
from the previous population and offspring. The ylapon size is typically constant.
Thus, while some individuals from the previous dapian are kept, others are discarded
and replaced with offspring. Each population idezhb generation (of individuals). The
algorithm keeps on generating populations of caatdigolutions until it is considered
that, from the last generation, there are no mogaifscant improvements in the
individuals’ fitness. Evolutionary Algorithms arsed in many research fields to address
single-objective and multi-objective optimizatiomoplems, based on the concept of
Pareto efficiency [113].

In this chapteP, we use UniMap (see Chapter 4) to evaluate atichizie two
evolutionary algorithms: an Elitist Genetic Algdwh (EGA) and an Elitist Evolutionary
Strategy (EES). After approaching our problem vathOptimized Simulated Annealing
technique, we decided to switch to evolutionaryoatgms due to their intrinsic
parallelism. Evolutionary techniques perform seascstarting (in parallel) from multiple
points in the search space. Our evaluated algositbptimize the Network-on-Chip
communication energy. We consider multiple cross@e mutation operators, specific
for permutation problems, like NoC application miagpis. Using problem specific
knowledge, we propose such context-aware operatéesshow such operators improve
the evolutionary algorithms’ performance. We try ftod out which crossover and
mutation leads to the best solutions. We also reBeahether crossover or mutation
helps more the evolutionary algorithms. These #gms are compared with our
Optimized Simulated Annealing (OSA) technique (Sdmapter 6). Finally we approach
our problem in a multi-objective way: besides miizimg NoC communication energy,
we also try to obtain a mapping that is thermaéiabced.

> The work presented in this chapter was submittd July 2% 2011) to the Journal of Systems
Architecture (JSA http://ees.elsevier.com/jsaSince July 28 2011, it is under review with manuscript
number JSA-D-11-00103 [114].

108

Designing Domain-Knowledge Evolutionary Algorithiias Network-on-Chip
Application Mapping

7.1 Related Work

In our opinion, one of the most representative wptsing evolutionary algorithms for
Network-on-Chip application mapping, is the oneealeped by Ascia et al. [64], [115],
[72]. The authors use a genetic algorithm to detsnthe mapping with the best
application execution time and power consumptidme Tappings are evaluated using a
NoC simulator.

In [64], the SPEA2 [65] multi-objective genetic atdhm is used, with single-
point-crossover and swap mutation. Both geneticaipes remap hot spot cores (i.e. the
cores with the highest communication volume) rangom/e question here the use of
single-point-crossover because this kind of operatay lead to duplicated genes in the
offspring, which are not allowed for permutatiomiplems.

The crossover and mutation operators are redefinefl15]. The mutation
operator chooses a core at random and placesoitomat of the neighboring nodes of the
core with which it communicates the most. The avees operator is not aware of the
NoC application mapping problem. It acts as mudtigwap mutations. No useful
information about the two crossed over mappingxchanged.

The same mutation operator is kept in [72], while trossover operator was
changed: from the two parents, the one with théebabapping is chosen. Then, its hot
spot core is swapped with a randomly chosen cdris. drossover operator also does not
exchange any information between the two parentpingp. It actually acts as a swap
mutation, too.

Ascia et al. conclude that the definition of suiéagenetic operators has a strong
impact on the performance of the genetic algoritithey admit future research is
required in this area. We also observe that, eisdigntAscia et al. define a crossover
operator that behaves like a mutation operator.

We evaluate several crossover operators for petiontgproblems: Position
Based (PB) and Partially Mapped (PMX). We impro& B/ proposing NoC Position
Based crossover (NPB), a context-aware geneticatgerWe also introduce a novel
crossover called Mapping Similarity (MS). It iddigs the similarities between the two
parent mappings and propagates them to their ehildn contrast with the crossover
operators of Ascia et al., MS exchanges informalietwveen the parents.

As mutation operator, we integrate our developedtifdped Simulated
Annealing (OSA). We show that, as compared with pswautation, this hybrid
(evolutionary — simulated annealing) approach mlesibetter results.

Besides a genetic algorithm, we also work with aolwionary strategy. EES is
available in jMetal (a multi-objective metaheustilibrary, which is integrated in
UniMap — see Chapter 4). We also use the OSA itthgoras a baseline. This allows us to
compare simulated annealing with evolutionary atgaors.

We evaluate our two algorithms with every crosscvsl mutation operators, in
terms of solution quality and convergence speece gbal is to identify the best
crossover and mutation operators. We also wanintb dut how each genetic operator
influences our algorithms.

Finally, we show how our genetic operators behawegl a multi-objective
optimization, with NSGA-II [116] and SPEA2 algonitis. Besides minimizing NoC
communication energy, we also aim to place thedies so that the NoC is thermally
balanced. For the thermal balance goal we userthtacal model presented in [117].

109

Designing Domain-Knowledge Evolutionary Algorithiias Network-on-Chip
Application Mapping

Thermal balance means minimizing the hotspot teatpers. This is achieved by leaving
a bigger distance between the IP cores that consoone power. Even if these IP cores
do not communicate a lot (or even not at all), iplga bigger distance between them
changes the entire mapping. A thermally balance@ blauld have the communicating 1P
cores not placed as close as possible. Thereforefwm objectives are contradictory.
This makes the multi-objective optimization proceswre difficult than the one of Ascia
et al., where the two objectives (application mn&iand power) are not contradictory
(both application execution time and NoC power comgtion will decrease if the
communicating cores are closer to one another).

7.2 Energy- and Performance-Aware Genetic Algorithm

We developed in UniMap an Energy- and performaneara Genetic Algorithm (EGA).
EGA is based on the Generational Genetic Algoriff@GA) [118]. As compared to
GGA, EGA implements an elitist mechanism.

EGA is developed for MxN 2D mesh NoCs but, it neyextended to work with
other topologies as well. The algorithm uses abérgy analytical model for computing
the NoC communication energy. It considers that éigsion Order Routing is employed
but, it can also generate a deadlock- and livefoeg&-routing function using the turn [30]
and odd even [31] models. Additionally, network thardth constraints may be
considered.

Before describing how our algorithm works, we preéseow we represent our
NoC application mapping problem genetically, inmerof genes and chromosomes.

Each IP core is uniquely identified through a pwsiinteger number, which
forms a gene. Thus, the chromosome is a one-dimesisarray containing non-repetitive
positive numbers (coding the IP cores) and “-1"darpty NoC tiles. Each chromosome
(individual) represents a mapping of cores onto NiS. For a MxN 2D NoC mesh (M

columns, N rows), thé"igene (=1,M IN) from the chromosome encodes the IP core

i%M, i%M #£0 :

_ -th column (% is the modulo

M, i%M =0

operator). Thus, a chromosome may contain multidlé values. Its length is of MxN
genes. Internally, before applying genetic opestare replace this “-1” values with
unique identifiers so that the chromosome contaisst of non-repetitive numbers. This
allows us to work with genetic operators for peration problems. After the genetic
operator is applied, the “-1” identifiers are pack.

EGA starts with a population of randomly generatedividuals. The population
size is an algorithm parameter. It is set by defaul 00.

EGA’s fitness function is given by the bit-energyalytical model (see section
3.1.3.2). Our algorithm uses the Binary Tournan&eiection [112] technique, available
in jMetal. It works by selecting an individual foeproduction as the individual with the
best fithess from a set of two randomly selectelividuals.

Reproduction consists of applying the crossovet mtation genetic operators.
Our algorithm works by default with Position Ba4&B) crossover and swap mutation.
The crossover and mutation probabilities are allgoriparameters. By default, we work
with 90% crossover probability aridn mutation probability, where is the number of
NoC nodes.

placed in the[i/M |-th row and{

110

Designing Domain-Knowledge Evolutionary Algorithiias Network-on-Chip
Application Mapping

We have implemented and integrated into jMetal B® crossover. Swap
mutation is available in jMetal. As we will showmtéa on, we implemented other two
crossover operators and another mutation operdfer.also make use of the Partially
Mapped Crossover (PMX), available in jMetal.

EGA stops after a specified number of generatitimeay also be stopped after a
given number of evaluated mappings.

7.3 Elitist Evolutionary Strategy

Elitist Evolutionary Strategy (EES) [112] is avé&ila in jMetal. We adapted this
algorithm to our problem by using the same energgra fitness function like in the
EGA case.

EES works very similar to a genetic algorithm, withe difference that the
reproduction phase uses only mutation. The algoritforks with a population of size
At each generation, it generateffspring, A > Q. For every new generation,best
individuals are selected from the previous popatatiand from thei offspring
individuals. In our simulations, we s&t2u. We present next the pseudocode for this
algorithm.

1. Randomly generate a | size population

2. Evaluate all individuals

3. WHILE not stopping criteria meet

4 WHILE not/ offspring generated

5. Select a parent by any selection method

6 Create a new offspring by using mutation operator

7 Evaluate the offspring

8 END WHILE

9. Create new population (from previous population arffspring)
10.END WHILE

Fig. 89 Elitist Evolutionary Strategy

7.4 Developing Problem Knowledge Crossovers

This section presents the crossover operators usdtis research. We work with
crossover operators for permutation problems. Thezanany such operators in literature
(order, inversion, cycle etc.) [64]. We used PositBased Crossover and Partially
Mapped Crossover. Position Based Crossover (PB)] [diins keeping absolute position
information during the recombination process. RiytiMapped Crossover (PMX) [120]
tries to preserve genes’ order, adjacency andiposis much as possible. PMX is one of
the most used crossover operators for permutatioolgms [112].

Next, we present two new crossover operators tieaprepose for the Network-
on-Chip application mapping problem.

7.4.1 NoC Position Based Crossover (NPB)

NoC Position Based Crossover (NPB) extends PBaothie cores that are kept fixed are
not selected randomly. We rather keep fixed the dpuit cores, i.e. the cores which
communicate the most data. We sustain our apprbgcirguing that moving hot spot
cores is more likely to produce worse mappings thawing less communicating cores.

111

Designing Domain-Knowledge Evolutionary Algorithiias Network-on-Chip
Application Mapping

NPB basically favors less communicating cores tresge themselves around the hot
spot cores.

NPB starts by finding the first 50% cores which coamicate the most data. After
we have the list of hot spot cores, we evaluatetwee parents, Pand B, using the
following relation: cost= Zvol(ci ,C;) [distancéc,,c;) , whereC is the set of hot spot

e

cores. This relation takes into consideration th& dolumes and the Manhattan distance
between the hot spot cores (we assume a 2D mestoggpbut, the relation may easily
be adapted for other topologies as well). We usedistance metric because we assume
a network with XY routing. The parent that betteapped the hot spot cores is the
selected parent. Next, an offspring is createdlagipg the hot spot cores in the positions
they are in the selected parent. The rest of tfepong’s genes are filled from the other
parent, like PB does.

Our approach, based on hot spots, is similar & approach from [72]. The
difference is that, we do not simply swap the hpmtt£ore with a randomly chosen core;
we rather fix the first half of the most communingtcores. While the crossover from
[72] behaves as a swap mutation, NPB acts as &éidPoBiased crossover, with context-
awareness.

7.4.2 Mapping Similarity Crossover (MS)

Our developed Mapping Similarity crossover (MS) hilas purpose of identifying the
topological similarities between two (parent) maygs and replicating them in the
offspring. MS has two phases. The first phase tioeslentify the mapping similarities
between the two mappings. By doing so, the comnhamacteristics of the two mappings
are identified. The cores mapped in a similar walgath parents are mapped the same in
the two children: child 1 maps the similar cord® Iparent 1 and child 2, like parent 2.
We should point out that the offspring keep the smn characteristics of their parents,
either good or bad. The goal of the first MS phas® decide which genes the offspring
inherit from their parents. MS attempts to imprdte offspring through a secondary
phase, which performs a greedy mapping for the oe$he genes. This phase tries to
raise the children fitness by rearranging the cadgigh are not mapped similarly, hoping
they will be placed better with respect to the Emcores. We present next, in detail,
how MS works.

MS starts from two parent individuals 8nd B. For each parent, it computes the

distance array. Its elements are given D[i|= Zd(i,k). Cis the set of IP cores. The

i,kOC
izk

termd(i, k) gives the Manhattan distance between communicatngsi andk (D[i] =0
when cora does not communicate with any core). Note the edatn of D is topology
dependent. We assume a 2D mesh NoC but, our approay be applied to other
topologies as well. Let Dbe the distance array for Bnd B} the distance array for,P
Then, we define a similarity functiddthat returns a binary array so that its elemerds a
defined as:

SIE {l Dfl=0.l] ¢

0, D,fi]# D,[i]

112

Designing Domain-Knowledge Evolutionary Algorithiias Network-on-Chip
Application Mapping

We observeD, fi|= D,[i]even when the cores communicating with dosee at different

distances from, in P, and B. This happens when the sum of distances is the.sahis
similarity function applies a transformation on timappings’ representation. From the
topological graph, the similarity function allows to only see the communicating cores
between which the distances are the same. For dgaogmsider three cores3,C, and
Cs. Let G communicate with €and Gwith Cs. In both R and B, the distance between
C; and Gis 1 and betweenfand Gis 2.

P1 P, Cs C G

C G

Cs

Fig. 90 Example of similar mappings, for 3 cores oa 3x3 2D mesh NoC

Our function S returns the array [1, 1, 1, 0, 0, 0, O, O, O] (assumed there is no
similarity between the rest of the cores, not shownhe above figure). It shows the
placement of these first three cores is simildvath parents, even if the cores are placed,
in Py, in the lower left corner of a 2D mesh and in iR the upper part. The similarity
function tries to identify which cores are mappédte tsame way in both parent
individuals, being aware of the symmetries thatsex a NoC topology like the 2D
mesh. The example above illustrates the motivati@mhind MS phase one: the
symmetries from 2D mesh topological graph can gdsihd to many different core
placements which are actually having the same graogt. A criticism to this approach
might be that MS can easily propagate “bad” simtiks. By “bad” similarity we
understand cores that are at big distance fromao¢her but, since they are at exactly
the same distance in both mappings, they are ceresicsimilar. We argue that we should
not make a distinction between “good” and “bad” i&nities in our case. Firstly, we do
not know for sure when a similarity is “bad”. Fotaenple, even if two communicating
cores are placed at five hops from each other, thight be the optimum distance
between them. Secondly, we should propagate alhremmcharacteristics from parents to
their children. By doing so, MS has higher chartocekeep the crossover disruption rate
low (obviously, the bigger the sequence of genasithtransferred from the parent to the
child, the lower is the probability of a child taopuce perturbations). Our crossover
operator has a parameter that restricts the sitgifamction to work with cores that are
at mostH hops awayH ranges from one to infinity. Wheh is infinite, Sis unrestricted.
According to the schemata theorem, to maximize thances of preserving the
hyperplane samples, the crossover’s disruptivectsffeshould be minimized [121].
However, it is not enough to consider how oftarér) an individual is disrupted but
alsohow it will be disrupted [122]. The second MS phasdradses this issue.

The rest of the cores will then be remapped in eedy manner. It is greedy
because we want the crossover operator to be\Wstorder the cores left for mapping
based on how many similar cores they communicaie When, we position each core in

113

Designing Domain-Knowledge Evolutionary Algorithiias Network-on-Chip
Application Mapping

an empty place, so that the Manhattan distancedsetut and the already placed cores is
minimized. Therefore, MS second phase is actualfgsh and simple partial mapping
algorithm. Obviously, this greedy approach may lgdse replaced with other mapping
techniques, by simply restricting the similar cai@sheir given positions. This MS phase
attempts to disrupt the hyperplane samples so ttietgenetic algorithm exploration
process improves. The disruption rate is contrdigdhe first MS phase.

We argue our MS crossover operator does not siraptyas a swap mutation
operator like in the research of Ascia et al. [§4],5], [72]. MS instead tries to identify
mapping similarities, which are inherited from boparents. This emphasizes the
crossover character.

7.5 Mutation Operators

This section presents the two mutation operatoed usthis research. We chose to work
with swap mutation, which is a very common geneperator in permutation problems.
It simply interchanges two randomly selected genes.

Using our developed Optimized Simulated Annealahgorithm as a mutation
operator we obtain a hybrid algorithm: an EvoluéipnAlgorithm which incorporates a
Simulated Annealing technique. OSA performs a cdragvare mapping and outputs two
cores which must be swapped. It performs an itmagiach time it gets called by the
Evolutionary Algorithm. When the number of iteraito reaches OSA’s number of
iterations per temperature level, the annealingptature is decreased.

By using OSA as a mutation operator, we proposegusybrid algorithms for
NoC application mapping. More precisely, we have meta-heuristic, with an
Evolutionary Algorithm as the main algorithm. Thé Encapsulates a NoC specific
algorithm, as a mutation operator (OSA). This apploallows us to benefit from the
intrinsic parallelism that EAs contain. Also, thepkration has context-awareness,
through the proposed mutation. The mutation maydrormed by any algorithm for
NoC application mapping. Any EA using a mutatiorigtor may be used.

7.6 Multi-objective Optimization

NoC communication energy is minimized by placing #tommunicating IP cores as
close as possible, onto the NoC tiles. Since wendeeested to evaluate the performance
of the genetic operators used in this researchdava multi-objective optimization, too.
Our second objective is to do a thermal-aware phace of the IP cores. Uniformly
distributing the IP cores’ temperature across #tevark leads to the minimization of the
hotspot temperature. Two IP cores that consumefisigmt power should be placed at a
greater distance from one another. However, thisns@ur thermal balance objective is
in contradiction with our energy objective.

For thermal balanced NoC design, we adopt theoagprfrom [117]. The NoC
architecture is modeled as a matrix. Each matexeht is a NoC node with an IP core.
In order to measure the IP cores temperatures,seehe HotSpot tool [123]. UniMap
can automatically generate a floorplan correspanthna NoC application mapping. The
floorplan is a matrix of regular NoC tiles. We ciwles each tile has a core and a router.
The tiles size is the sum between router arealamérea of the largest IP core from the
E3S [56] library. This library also gives us thedére power consumption (based on how
much power a core requires to process the assigmglCation tasks). We used ORION

114

Designing Domain-Knowledge Evolutionary Algorithiias Network-on-Chip
Application Mapping

[96] to obtain the size of a typical NoC router.id'ts everything required by HotSpot to
provide the IP cores steady state temperaturess(imeghin Kelvin). The NoC matrix is
divided intot x t sub-matrices, wheras the heat transfer ability. The lardes, the more
neighboring IP cores will be affected by the souReore. For each sub-matrix, we sum
the temperatures associated with the cores fro@oisidering all these sub-matrices, the
goal is to minimize the maximum sum (thus, the &#m function will
be ! -). Fort = 1, the problem is trivial: any mapping is optimal.
max{submatrice sum$

Taking into consideration the conclusions from [[L2% work witht = 2.

Each time the multi-objective genetic algorithmS@IA-11 or SPEA2) needs to
evaluate a NoC mapping, the bit energy model il tse&ompute energy and HotSpot is
called during the thermal balance evaluation.

7.7 Simulation Methodology

This section presents the simulation methodologgdufor evaluating and
optimizing Evolutionary Algorithms for Network-onHip application mapping. We work
with: our developed Energy- and performance-awaeeeBc Algorithm (EGA), Elitist
Evolutionary Strategy (EES) and we use OSA as alinas For both EES and EGA, we
used two mutation operators: swap mutation and @8#fation. For EGA, we have also
worked with different crossover operators: PosiBased (PB), Partially Mapped (PMX)
and respectively our developed NoC Position Bad¢dB) and Mapping Similarity
(MS). Our multi-objective evaluations work with tjidetal NSGA-Il and SPEA2 genetic
algorithms, with the above genetic operators.

We use in this research all the benchmarks predeint Chapter 5. We have
considered the most common Network-on-Chip architec a 2D mesh with regular
tiles, using wormhole switching and XY routing. TNeC topology size is a simulation
parameter. All benchmarks are mapped on 2D mestliessizes exactly like in Section
6.3. Like in Chapter 6, we combined some benchsgr be able to work with big NoC
meshes. VOPD 4x has four times the VOPD (CTG Orberark.all-mocsyncontains all
the E3S benchmarks. T®&-coresbenchmark is made of: H.264 (CTG 1), MMS (CTG
0), MMS (CTG 1), MPEG-4, MWD and VOPD (CTG 0). Th81-coresbenchmark
combines all non E3S benchmarks. Finally, by combirall benchmarks we gét5-
cores

In order to increase the simulations’ accuracyhaee mapped each application
1000 times, with each algorithm. For each simuigtibe initial mapping was randomly
chosen. To make the comparisons fair, we havehsetséed of the random number
generator so that all algorithms start from the esgioint in the search space, every

simulation. Thus, simulationworks with seed, i =11000. Benchmarks VOPD 4x and

all-mocsynrun only 100 times, an@7-cores 131-coresand 215-coresonly 10 times.
This is because processing these benchmarks takeslerably more time [106].

We are interested to see how mutation probabilifjuénces the algorithms.
Since we work with context-aware mutation, it ig oear to us if mutation probability
should be low or high. Also, we want to find ouththe proposed crossover operators
perform. We argue it is also interesting to find auwhat mutation probability level each
crossover works best. Therefore, we varied the tioutgorobability, from 10% to 100%

115

Designing Domain-Knowledge Evolutionary Algorithiias Network-on-Chip
Application Mapping

in steps of 10%. We divided the simulations everdl@% simulations per mutation

probability. In fact, it is unclear if crossovershhigher importance than mutation to an
Evolutionary Algorithm [125]. However, because we dere more interested about
crossover than mutation and due to the high nurabsimulations, we decided to work

with a constant crossover probability of 90%. Wsodixed EA’s population size to 100

individuals. Since we use OSA as a baseline alyoritwe limited EGA and EES to

perform the same number of evaluations like OSAsdoe

7.8 Experimental Results

We present next only the most representative esalitained with our research on
domain-knowledge evolutionary algorithms for Netlwon-Chip application mapping.
Our entire set of results is available in [126].

We start by measuring the mapping cost found fahdaenchmark. Since (in
order to improve the accuracy of our results) we the& same application multiple times,
we obtain an average mapping cost (energy). Wesgeh average cost for every
evolutionary algorithm, with every crossover operand for each mutation probability.
For EGA with MS crossover and OSA mutation, we dilsot the similarity function to
the IP cores that are one — EGA-MS-OSA (1) — or lwps away — EGA-MS-OSA (2).

We work with the metric that we callormalized Absolute Deviation (NAD)
from the minimum (in this case the minimum average energy). Thigimes based on
the statistic absolute deviatioAl) metric. Because we deal with a minimization
problem, we consider the absolute deviation from inimum average cost from the
entire data set{). Then, we normaliz&D by dividing it to max{X, }(the maximum

average cost from the entire data set). Theretbeenormalized absolute deviation (of

: . : X, —min{X,} :
data point, [0X,) from the minimum iNAD, =——————. The indexb, marks a
" " max{X,}
benchmark evaluated with an algorithm with at aasermutation probability. For each
benchmark, we obtain its NAD, at every mutatiom rassing the above formula. The data
setX, contains the average mapping energies obtainedl kyolutionary algorithms, for
the specified benchmark. At each mutation level, average the NADs of all our

NAD, +NAD, +...+ NAD,

B
being the number of benchmarks andn the mutation probability
(mO{10%,20%,...100%}). We use this metric because directly comparireg aterage

energies obtained for different applications iseasible since each application has its
own energy domain (which usually differs signifitgh

Figure 91 presents how much the average mappirsty deviates from the
minimum average cost, found by all algorithms. \WWeve the results obtained only for
the big benchmarks (VOPD 4all-mocsyn 97-cores 131-coresand215-core$ because
our evolutionary algorithms perform similarly orethest of the benchmarks (in terms of
average mapping cost). For every algorithm, onéygdbint corresponding to the mutation
probability where it performed best is shown.

benchmarks. Therefore, we hakegerageNAD,, = , with B

116

Designing Domain-Knowledge Evolutionary Algorithiias Network-on-Chip
Application Mapping

100 | > v] > X
90 X LD <
80 V2]
S 70]
2
2 60 * [
S
5 50 &]
5
240]
3
30]]
20]
10]
1.25% 150% 1.75% 2.00% 225% 2.50% 2.75% 3.00% 3.25% 3.50% 3.75% 4.00% 4.25% 4.50%
Average NAD [%]
O EGA-SWAP B EGA-OSA © EGA-MS-SWAP ® EGA-MS-OSA ¥ EGA-MS-OSA (1)
V EGA-MS-OSA (2) > EGA-NPB-SWAP » EGA-NPB-OSA < EGA-PMX-SWAP < EGA-PMX-OSA

X EES-SWAP X EES-OSA 0 OosA

Fig. 91 Algorithms’ comparison based on their averge normalized absolute deviation, from their
common minimum average cost (only big benchmarks)

It may be easily observed that all algorithms penfesignificantly better with OSA
mutation than with swap mutation. EES-OSA has timallest deviation, among all
algorithms, followed by EGA-PMX-OSA. EGA-MS-OSA the next best performing
algorithm in this case. We even notice a slightiytér performance for EGA-MS-OSA
(1) (1.64% deviation) than for EGA-MS-OSA (1.77%vidion). However, EGA-MS-
OSA (2) performs much worse (3.21% deviation, &2%0mutation probability). After
EGA-MS-OSA we have EGA-OSA and EGA-NPB-OSA. EGA-O®&Athe algorithm
that gives the smallest deviation at the lowestatmn rate: 30%. EGA-NPB-OSA is
better than EGA-MS-SWAP. Still, EGA-MS-SWAP clealigats OSA, making MS the
only crossover than outmatched OSA with both matatperators. Mapping Similarity
is the only crossover operator that performed vegjardless of the mutation operator. PB
crossover also does not provide bad results butjsvi®early better (EGA-SWAP has a
3.52% deviation, with only 0.02% smaller than OSA®&viation). The performance of
our other crossover operator, NPB, is not good wiliencompare it with PB. In both
cases (OSA or swap mutations), NPB performs wdraa PB. However, we observed
(on all benchmarks) that NPB performed better agttbb as mutation grew. It performed
best at 100% mutation probability (similarly to PMXPB performed best at 80%
mutation (on all benchmarks). Raising the mutatitade PB perform worse. EGA with
MS performed best at 50% - 60% mutation rate, dtvehchmarks. We may conclude
that MS is the crossover operator that contribtitesmost at obtaining a good average
mapping cost. The rest of the operators rely siggnitly more on the mutation operator.

In conclusion, in terms of average mapping cts, Elitist Evolutionary Strategy
with OSA mutation performs the best. The Energy en@enetic algorithm has the best
behavior with OSA mutation and with PMX crossové@ur developed Mapping
Similarity crossover gives similar results: its malized absolute deviation is with only
0.25% worse than the one of PMX. NPB performs wamsethe big benchmarks. Its
deviation is with 1% higher that the one of PMX.

117

Designing Domain-Knowledge Evolutionary Algorithiias Network-on-Chip
Application Mapping

Similarly to the average normalized absolute dewmametric, we also computed
the minimum NAD and the maximum NAD.

100 <]
90l

g0 V'V
70 <«
60 @
50

40

30l

20

Mutation probability [%]

T I Y A O

0

10
0.00% 0.02% 0.04% 0.06% 0.08% 0.10% 0.12% 0.14% 0.16% 0.18% 0.20% 0.22% 0.24% 0.26% 0.28% 0.30% 0.32%

Minimum NAD [%]

U EGA-SWAP B EGA-OSA © EGA-MS-SWAP ¢ EGA-MS-OSA V EGA-MS-OSA (1)
V EGA-MS-OSA (2) > EGA-NPB-SWAP » EGA-NPB-OSA < EGA-PMX-SWAP < EGA-PMX-OSA
X EES-SWAP X EES-OSA 0 OosA

Fig. 92 Algorithms’ comparison based on their minnum normalized absolute deviation, from their
common minimum average cost (only big benchmarks)

In almost all cases we obtained the minimum NADth&t same mutation probability
where the average NAD is. From this point of viele biggest difference is for EGA-
PMX-OSA, which has the average NAD at 100% mutatate and the minimum NAD
at 70%. EES-OSA, EGA-NPB-OSA and EGA-OSA have zeiaimum NAD. This
means these algorithms found for at least one bigclmark the minimum average
mapping cost.

100 & I [
90] X
80 I
S O]
2
= 60 vV >]
©
S 50 0J
o
S 40 [| O X
©
2 30 < L] <
20 A, Il
10 >
6.40% 7.40% 8.40% 9.40% 10.40% 11.40% 12.40% 13.40% 14.40%
5.90% 6.90% 7.90% 8.90% 9.90% 10.90% 11.90% 12.90% 13.90% 14.90%
Maximum NAD [%]
O EGA-SWAP B EGA-OSA O EGA-MS-SWAP ¢ EGA-MS-OSA vV EGA-MS-OSA (1)
V EGA-MS-OSA (2) > EGA-NPB-SWAP » EGA-NPB-OSA < EGA-PMX-SWAP < EGA-PMX-OSA
X EES-SWAP X EES-OSA 0 0SA

Fig. 93 Algorithms’ comparison based on their maximm normalized absolute deviation, from their
common minimum average cost (only big benchmarks)

118

Designing Domain-Knowledge Evolutionary Algorithiias Network-on-Chip
Application Mapping

The smallest maximum normalized absolute deviatias obtained with our developed
MS crossover (with and without OSA mutation). EGAMWAP is the single algorithm
with a maximum deviation that is lower than OSAEES-OSA is the only algorithm
with OSA mutation that has a maximum NAD exceed®A’s maximum deviation.
Next, we are interested to find how good are th& beappings found by each
algorithm. In order to compare the best solutioosnfi by all algorithms, we have
identified for each application the best solutioarid by all algorithms. Then, for each
application, with each algorithm and mutation ptabty, we have computed the
additional energyAE) its best mapping consumes, with respect to tke smution found
by all algorithms. Using the same notation like MAD computation, we define the

g . X, —min{ X} . .
Additional Energy metric a8E, =—=—————. In this case however, we work with a
" X

bm

different data setX, contains the minimum mapping energies (not theamesones, like

in the previous case). Finally, like for averageAve averaged the additional energies
for all benchmarks. The following chart presentsstn results. We show for every
algorithm the value at the mutation level wherehtained the lowest average additional
energy.

100 < > >
90]] 0 <
< 80 X v v O
> 70 Ol X
g 60 @ O
o
2 50 O
S 40 & O
Jo
3 30 O
20 |
10 [l
0.25% 0.35% 0.45% 0.55% 0.65% 0.75% 0.85% 0.95% 1.05% 1.15%
Average AE [%]
O EGA-SWAP ® EGA-OSA © EGA-MS-SWAP ¢ EGA-MS-OSA V EGA-MS-OSA (1)
V EGA-MS-OSA (2) > EGA-NPB-SWAP » EGA-NPB-OSA < EGA-PMX-SWAP <« EGA-PMX-OSA
X EES-SWAP X EES-OSA 0 OSA

Fig. 94 Average additional energy consumed by thesbt mappings found by each algorithm,
compared to the best mappings found by all algoritins

EGA-MS-OSA is the algorithm that has the most maggithat are the best. On average,
the best mappings found with this algorithm introeljust 0.29% additional energy. Very
close to this result is EES-OSA, with 0.3% addidbenergy. After EGA-PMX-OSA
(0.36%), follow EGA-NPB-OSA and EGA-MS-OSA (1), bowith 0.52% additional
energy. Note that all the algorithms except EES-$/\hd EGA-PMX-SWAP find, on
average, better mappings than OSA. This chartdisws that swap mutation produces
worse mappings than OSA mutation, regardless theritim. However, there is an
exception: EGA-MS-OSA (2) does not produce bettappings than all algorithms with
swap mutation.

119

Designing Domain-Knowledge Evolutionary Algorithiias Network-on-Chip
Application Mapping

We conclude our solution quality based analysisshgwing how often each
algorithm manages to reach the best solution. Viés te the best solution found by all
algorithms, not to the best solution each algoritttund. Hence, it is possible an
algorithm has a zero best solution percentage. ¥mel the Averaged Best Solution
BS +BS, +..+B

2 SZTB >, [%]. BS, is
the Best Solution percentage for benchmiarlat mutation levem. It represents how
many times an algorithm finds the best mappingnéoly all algorithms.

On the big benchmarks, OSA is unable to find tést Isolution. Also, not all of

the evolutionary algorithms manage to reach the &astion. This may be seen in the
following figure.

percentage at mutation rame asAverageBS, =

10084

90 < | 2
— 80/ <&
s
2 70]
g 60 *
o
s 50
S a0] b 4
©
3 30 n
20]
100]
0.00% 2.00% 4.00% 6.00% 8.00% 10.00% 12.00% 14.00% 16.00% 18.00% 20.00% 22.00%
Average BS [%]
O EGA-SWAP B EGA-OSA © EGA-MS-SWAP ¢ EGA-MS-OSA vV EGA-MS-0SA (1)
V EGA-MS-OSA (2) > EGA-NPB-SWAP » EGA-NPB-OSA < EGA-PMX-SWAP < EGA-PMX-OSA
X EES-SWAP X EES-OSA 0 OSA

Fig. 95 Average best solution percentage on big bemmarks

EGA-NPB-OSA is the algorithm that has the highesgtlsolution percentage, which is
22% at 90% mutation probability. EES-OSA and EGAAOfave a value of 20%. Than,
with just 2%, we have EGA-PMX-OSA, EGA-MS-OSA an@GGA-MS-SWAP. We
notice all the algorithms using swap mutation amahble to reach the best solution. The
only exception is EGA-MS-SWAP.

Our conclusion is that NPB crossover gives the bekition percentage, on the
big benchmarks. Mapping Similarity and PMX crosssvgive a similar best solution
percentage. OSA mutation is essential for EES lscamith swap mutation EES
performs worse even than EGA with NPB crossoversavap mutation.

Regarding the optimal mutation probability, we oled there are algorithms,
like EGA-NPB-SWAP, for which we obtained exactlethame mutation rate. However,
in general there is no ideal mutation probabil®ur experiments indicate the optimal
mutation probability may vary from 20% up to 100Far EGA-MS-OSA, we got the
same optimal mutation probability in terms of ageraand best mapping cost. We
conclude that mutation probability is applicatiomdaalgorithm dependent. The lowest
mutation rate is consistently encountered when ingrkvith our developed Mapping
Similarity crossover. This indicates MS is the smger operator that relies the least on

120

Designing Domain-Knowledge Evolutionary Algorithiias Network-on-Chip
Application Mapping

mutation to find the best NoC application mappiige tried to limit the similarity
function of MS by considering only the cores whete one or two hops apart in the
NoC. Overall, we did not obtain significantly bettesults. EGA-MS-OSA (1) and EGA-
MS-OSA (2) require a higher mutation probabilityfamction optimally.

We present next how some of our algorithms convergiene. Since the previous
results showed us that OSA mutation gives bettsult® than swap mutation, we focus
only on these algorithms: EGA-OSA, EGA-PMX-OSA, EGIWB-OSA, EGA-MS-OSA
and EES-OSA. We ran each of the five algorithmslfa®0 generations per application.
To improve the accuracy of our simulations, we each application for 100 times (by
setting the random number generator seed from 10@). Finally, we averaged the
energy cost of all 100 mappings per application p@dgeneration. We worked with the
mutation values determined by our average cosysisal

Fig. 96 shows how the five algorithms converge an lmggest benchmark. We
mention that for all the other benchmarks we ole@ithe same behavior, as we will
detail next.

7.00E+010
6.00E+010 %
5.00E+010
4.00E+010
3.00E+010

2.00E+010

Average energy [picoJoule]

1.00E+010

0.00E+000
0 100 200 300 400 500 600 700 800 900 1000

Generations
==EGA-MS-OSA < EGA-PMX-OSA ==EES-OSA = EGA-NPB-OSA " EGA-OSA

Fig. 96 Algorithms’ convergence for 215-cores benatmark

All algorithms manage to reduce the mapping enaiggificantly, within the first 100
generations. EGA-OSA has the lowest convergencedsigGA-PMX-OSA, EGA-NPB-
OSA and EES-OSA behave approximately the same. FISAOSA is the algorithm that
converges the fastest during the first generatidkfter that, its convergence speed
decreases and it is outrun by EGA-PMX-OSA, EGA-NPBA and EES-OSA. We
believe this is justified by the greedy approaanifrthe second phase of our Mapping
Similarity crossover.

We measured when each algorithm reaches its lo&stion during the 1000
generations, for each benchmark and we averagectesiudts. EGA-OSA converges in
732 generations. It requires the most number okiggions to obtain its mapping with
the best communication energy. EGA-MS-OSA converges 562 generations.

121

Designing Domain-Knowledge Evolutionary Algorithiias Network-on-Chip
Application Mapping

Algorithms EGA-PMX-OSA, EGA-NPB-OSA and EES-OSA veg 475 generations.
EES-OSA is the algorithm that, on average, hasfdélseest convergence speed (424
generations).

Finally, we switch from a single objective to mwibjective Network-on-Chip
application mapping. Besides minimizing communmmatienergy, we are now also
interested in obtaining a thermal balanced NoC giesUsing NSGA-Il and SPEA2
genetic algorithms implemented in the jMetal lilyyaaugmented with all our genetic
operators, we evaluated NoC mappings &irmocsyn This is the benchmark that
contains all E3S applications. For E3S we know mauch power the IP cores consume
to execute a particular task. Each algorithm racepnvith each crossover — mutation
combination, for 1000 generations. Each time weeddgrom the same initial population.
We used the optimal mutation probabilities deteedirby our average mapping cost
analysis.

Fig. 97 shows, for every algorithm, the (normalizbypervolume [113] obtained
at each generation. For a minimization problenme(bkirs), the hypervolume is defined as
the volume enclosed by the Pareto front and aeeéer point. The coordinates of this
point are determined by the maximum values of thgeatives. The values are also
normalized using the (constant) volume betweenctiwedinate systems’ origin and the
hypervolume reference point.

0.63%
0.61%
0.59%
0.57%
0.55%
0.53%
0.51%
0.49% ¥
0.47%
0.45%
0.43%
0.41%
0.39%
0.37% ¢
0.35%
0.33%
0.31% §
0.29%
0.27%
0.25%
0.23%
0 100 200 300 400 500 600 700 800 900 1000

(Normalized) hypervolume

Generations

+NSGAI-PMX M SPEA2-PMX ¥ NSGAI-PMX-OSA ¥ SPEA2-PMX-OSA == SPEA2-NPB-OSA == NSGAI-NPB-OSA
V-NSGAI-NPB ¥=SPEA2-NPB =# SPEA2-PB-OSA "< NSGAI-PB-OSA *=SPEA2-PB += NSGAII-PB
“*NSGAI-MS-OSA SPEA2-MS < NSGAI-MS ¥ SPEA2-MS-OSA

Fig. 97 (Normalized) hypervolumes, for all evaluaté algorithms

The hypervolume grows significantly until the fireD0 — 300 generations, for all
algorithms. Then, it keeps growing slowly until tlest generation. This indicates how
the algorithms converge. The algorithms using oawetbped Mapping Similarity

crossover have a very fast convergence speed witkifirst 100 generations. However,
in the end, their hypervolumes are the smallests Tidicates MS leads to the worse

122

Designing Domain-Knowledge Evolutionary Algorithiias Network-on-Chip
Application Mapping

performance in this multi-objective case. Howevewe want fast results, then this will
be a suitable crossover. Looking at the hypervolwalees within the last generations,
we ordered the algorithms. This order may be seethé chart's legend. It may be
observed that PMX performs the best. It is folloviegd\NPB, PB and finally MS. We also
observed that both NSGA-II and SPEA2 performedebatith PMX and swap mutation.
The performance with OSA mutation was worse. ThesHi-objective results appear to
be in contradiction with our previous single-objeetresults. The explanation resides in
the fact that our two objectives are in a mutuaiteiction. OSA mutation, MS and
NPB crossover work to optimize energy but, thislioity leads to worsening the NoC
mappings in terms of thermal balance. NPB is mavigalle than MS (in this case)
because it just identifies hot spot cores, in teofmsnergy. However, they may also be in
terms of thermal balance because a highly commtingcaore might also have a higher
temperature.

Fig. 98 shows the Pareto front obtained in thé dameration by combining the
Pareto fronts of all the evaluated algorithms. Tdombined Pareto front holds only the
non-dominated individuals from all the merged Rafaints.

8

0.000733200 (@

0.000733300

g g
E 0.000733100
o
(1]
;; 0.000733000 @
E
.‘g 0.000732900

0.000732800

1000000000 1100000000 1200000000 1300000000
Energy [picoJoule]

O NSGAIFPMX-OSA W SPEA2-PMX-OSA V NSGAIFPMX » SPEA2-PMX

Fig. 98 Combined Pareto front (generation 1000)

It may be seen that PMX is the single crossoverldzals to the best solutions, found by
either NSGA-Il or SPEA2. We also observe therealet of good solutions in terms of
energy. All these mappings were found using OSAatmn. With swap mutation, we
managed to find three good solutions in terms efrttal balance. The significantly
higher number of good energy-biased solutions atd& the fact we tried to optimize
only energy with NoC application mapping knowledgeobably using a crossover which
also optimized energy was too much bias towardsglesobjective. This is how we
explain PMX was the best performing crossover. AmywPMX was one of the best
performing crossovers in the single-objective ctse,

7.9 Summary

We presented in this chapter the process of desigalyation and optimization of some
efficient domain-knowledge evolutionary algorithrfie Network-on-Chip application
mapping. We developed in UniMap an Energy- and qoetdnce-aware Genetic

123

Designing Domain-Knowledge Evolutionary Algorithiias Network-on-Chip
Application Mapping

Algorithm (EGA). EGA is integrated into jMetal liary, which is now part of UniMap.
Along with EGA, we also evaluated the Elitist Evabmary Strategy (EES) algorithm.

We showed all our evaluated algorithms work bettéh OSA mutation than
with swap mutation. One may easily introduce anyNgplication mapping algorithm,
into any evolutionary algorithm, as a mutation aper. The influence of the introduced
algorithm may be easily controlled through mutatioabability.

Besides optimizing our evolutionary algorithmswiiontext-aware mutation, we
also developed two specific crossover operatorsC NRosition Based and Mapping
Similarity. We also worked with other two standardssover operators for permutation
problems: Position Based crossover, developed asus jMetal extension and Partially
Mapped crossover, available in jMetal. Having fotmssovers, two mutations, a genetic
algorithm and an elitist evolutionary strategy, vesaluated twelve variants of
evolutionary algorithms. All these algorithms wetempared with the Optimized
Simulated Algorithm, which served as a baseline. fdiend that all the best solutions
were found by evolutionary algorithms (none by OS#Y the big benchmarks. This
proves EAs are superior to OSA for NoCs with ténsdreds of nodes.

We tried to find out how crossover and mutationerapors influence the
evolutionary algorithms. We performed an extenssaution quality analysis by
measuring the average mapping energy, the bestinggdost and the best solution
percentage. We found MS to be the crossover opeth&d contributes the most at
obtaining a good mapping. MS works best at 50%% 6@utation probability. The rest of
crossovers require higher mutation rates to get best average mapping cost (PMX and
NPB work best at 100% mutation, in terms of avereggt). Mapping Similarity is the
only crossover operator that performs well, on ager regardless of the mutation
operator. EGA obtained the best average mapping eath PMX and MS crossovers.
By measuring the best solution percentage, we fabadNPB leads EGA to the highest
value, on the big benchmarks.

We also tried to improve the performance of oumpplag Similarity crossover,
by limiting the similarity function to IP cores thare one or two hops away from each
other. However, we did not find significantly bettesults.

Our developed genetic algorithm performed, in galhehe best with MS and
PMX crossovers. However, our best results were ioddawith Elitist Evolutionary
Strategy, using OSA mutation. EES-OSA was the dlgor that also converged the
fastest. Although we managed to improve the geradgorithm through our crossover
operators, using an algorithm that works only wibntext-aware) mutation proved to be
better. Finding a suitable context-aware crossémeNoC application mapping is more
difficult than finding an efficient context-awareutation.

We also tried to find the optimal mutation probapilfor our algorithms.
However, this depends a lot on the algorithm andtle benchmark. Our optimal
mutation probabilities range from 20% to 100%.

Finally, we did a multi-objective evaluation usingSGA-Il and SPEA2,
improved with our genetic operators. Since our mjectives are contradictory, our
developed operators did not lead to the best pedoce. However, we did find the best
solutions, in terms of energy, with OSA mutationsiéNtable crossover operator for the
NoC application mapping problem is even more ditti¢o find if we consider multi-
objective optimization.

124

“The greatest intelligence is precisely the onet thafers most from its own limitations.”

André Gide

8 Application Driven Automatic Design Space
Exploration for System-on-Chip Architectures

In this chapter we propose a method for performangapplication driven automatic
design space exploration for System-on-Chip (Sa€@)igectures. We integrate UniMap
with a Framework for Automatic Design Space Expiora (FADSE) [127] with the
purpose of automatically finding the best SoC dedy any given application, in a
multi-objective way. Our objectives are: SoC enempnsumption, SoC area and
application runtime.

Using UniMap’s features, we simulate an entire cotimg system, consisting of
tens of heterogeneous IP cores that are mappedhimtmdes of a Network-on-Chip.

FADSE automatically configures this System-on-Cliighen simulates it using
UniMap’s simulator and gives the simulation restidtshe DSE algorithm that drives the
search process.

We show a feasible DSE workflow that meets our irequents and we identify
the most suitable SoC architectures, for a givepliegtion, in terms of energy, area and
runtime. We also compare four DSE multi-objectivgoathms (two genetics and two
bio-inspired) with the purpose of identifying thgaithm that performs the best.

8.1 Related Work

We present next two examples that stress out tip®riegnce of an application driven
automatic design space exploration for Network-dmpClesigns.

An exhaustive design space exploration of NetwarGhip architectures is
performed in [128]. The evaluated design space litaived by considering NoC
parameters like: the number of network nodes, #te/ork topology (butterfly, flattened
butterfly, fat tree, mesh and ring), the routingchmnism (static, minimal, oblivious
source routing), the switching technique (store-emmaiard and wormhole) and the size
of messages, packets and buffers. It is showntliea¢ isno NoC architecture, from the
researched design space, which is optimal acrdssf dhe used traffic patterns. For
example, a certain topology could best accommoalatesome certain traffic patterns or,
if there is a best topology, it is very likely thi&ie network resources must be allocated
differently, from workload to workload, so that tbptimal performance is achieved. As
such, the authors of this paper propose a contjeirdevice, capable of emulating
different NoCs. Such a device is calledoalymorphic networkoecause it allows the
configuration of the network topology, links widdnd buffers for each application. It
allows the instantiation of an arbitrary networkjop to application runtime. The
Operating System can configure the polymorphic nétihrough a stream of bits which
contain the network configuration information foparticular application.

A polymorphic network is basically built from maiyffers and crossbars. The
approach has the obvious advantage of flexibiliihe NoC resources can be
interconnected in a lot of ways, which allows faifedent networks to be instantiated.
The main drawback of a polymorphic network is thguired area budget.

Another example is related to the size of the No@ui buffers. It is shown in
[91] that using non-uniform input buffers deternsna significant increase of the

125

Application Driven Automatic Design Space Explooatifor System-on-Chip
Architectures

network’s performance. This is because, especiafign the network is congested, the
amount of buffering resources severely affectspidormance of the Network-on-Chip
architecture. The authors propose an algorithm ded¢cts the buffer which has the
highest probability to be full. The size of thaffieuis then increased because the channel
that owns it would otherwise become a real perfoiceabottleneck. The algorithm uses
as inputs some of the parameters of the systentrdffee pattern, the routing delay and
the current size of each buffer from the network.

Therefore, there is a huge number of possible Nesigds. Which is the most
suitable NoC architecture for a particular applmatmust be determined using Design
Space Exploration (DSE) techniques. These methogdyiheuristic algorithms, which
find near optimal solutions by considering one arrenobjectives (e.g.: performance,
energy consumption, area). Performing DSE requareswerful, modular, flexible and
highly configurable framework for automatic desgpace exploration.

xPipesCompiler [129] is a tool which allows thetamnatic instantiation of
application-specific Network-on-Chip architectureBhe blocks that make a NoC
architecture (links, network interfaces and roytene described in SystemC at cycle
level of accuracy. One of the advantages of thi$ i that it allows the user to create
custom network topologies. This tool uses an ififeito generate the network. The input
files contain information about the cores, switcHesks and the relationships between
them. Routing tables for the network interfacesadse specified. This can be regarded as
a disadvantage of the xPipesCompiler: the insterttimetwork does not actually use a
routing protocol. The routing paths are specifisdthe user. The tool also performs
optimizations of the network components. For exanipla switch has only its input link
connected to a port, then the buffer and logicafooutput port is not generated (because
it would anyway not be needed). This allows for povand area savings. Another
disadvantage of this tool is that, although itpplecation-specific, the network topology
must be specified manually, i.e. it cannot be deiteed based on the characteristics of
the application.

We have already presented in Section 4.1 twodveonks for Network-on-Chip
design space exploration. SUNMAP is focused on Noidlogy synthesis. The other
DSE tool is focused on multi-objective algorithms fNetwork-on-Chip application
mapping. UniMap, our developed unified framework etwork-on-Chip application
mapping, implements several application mappin@réalgns that can be used to map
real applications onto different Network-on-Chigsidms. The mappings can be evaluated
in a multi-objective manner, using either analyticaodels or a NoC simulator
(developed by us).

We present next an approach for automaticallyrdeténg the “best” System-on-
Chip (SoC) architecture, for any given (concurrapplication, from a multi-objective
point of view. The model used by this approachgrates UniMap with a Framework for
Automatic Design Space Exploration (FADSE) devetbpeour ACAPS research center
in Sibiu — sednttp://acaps.ulbsibiu.rarhis application driven DSE for NoC architectures
aims to optimally map the IP cores (running a paftér application) onto the tiles of the
most suitable Network-on-Chip design. We also ¢ryind the most suitable IP cores by
selecting them from a library of cores. We haves¢hobjectives: application runtime,
SoC energy and SoC area. We are interested imfirnitiat SoC design that executes the
given architecture the fastest and it consumessthallest amount of energy and it

126

Application Driven Automatic Design Space Explooatifor System-on-Chip
Architectures

occupies the smallest area. These objectives anteaclictory because improving one of
them usually leads to a regression of at leasobiiee others.

8.2 Framework for Automatic Design Space Exploration

The Framework for Automatic Design Space Explorat{i&#ADSE) [130], [131] is
developed by Horia Calborean from “Lucian Blaga”iwémsity of Sibiu, Romania, as
part of his PhD thesis [127]. FADSE is a clientveertool that includes many state of the
art algorithms through jMetal [86]. It can connéatalmost any existing simulator and
then it can perform parallel evaluations with IheTFADSE server distributes evaluations
to the available clients (the number of clients bardynamically changed). Each client is
instructed by the server to perform a simulatiothvé specified set of parameters. The
parameter values are determined by an evolutiomdggrithm, with respect to the
objectives to be optimized. Since the DSE processeasily take a lot of time (weeks,
months), FADSE is designed to be able to recovanfsituations like failing clients,
network failure or even system power loss. Simafetiare automatically resubmitted to
other clients in case of problems and more impdstanFADSE integrates a
checkpointing mechanism. This makes this tool bédicbecause the DSE process can
easily be restarted. This approach effectively @dsorestarting the design space
exploration from the beginning. FADSE also usesatalhse for storing the simulation
results. This allows the results of already sinedatonfigurations to be reused, which
reduces the time required to perform the explongpimcess.

FADSE was successfully used for a multi-objectiva,dware-software co-design
exploration of the design space for a superscgktes [132], [133]. We briefly present
next the metrics and the some of the most reprasestmulti-objective evolutionary
algorithms available in FADSE.

8.2.1 Metrics

Hypervolume and coverage are some of the most il@mpometrics implemented in
FADSE for evaluating the DSE process and for compgathe search algorithms. We
present them next because they are used in thigezha

8.2.2.1Hypervolume
the Oblective 2 A

For a minimization problem, ¢ Hypervolume
hypervolume [5] is defined as th P77 reference point
volume enclosed by the Pareto fro -

and a reference point. Th ‘r Hypervolume |

coordinates of this point are o

determined by the maximum value .

of the objectives. The values are al: L]

normalized using the (constan PR]

volume between the coordinat @ Pareto
systems’ origin and the hypervolum front -
reference point. For a maximizatio Objective 1
problem, the hypervolume it Fig. 99 Hypervolume for a twoebjective minimization
enclosed by the Pareto front and tl problem [109]

coordinate system axes.

127

Application Driven Automatic Design Space Explooatifor System-on-Chip
Architectures

FADSE computes the hypervolume after each generatfothe evolutionary
algorithm. The evolution of this volume shows iEtDSE algorithm makes progress.
When the hypervolume saturates we can decide potkeosearch process. Hypervolume
is a useful metric to determine the convergencedpé an algorithm. It can also be used
to compare the solution qualities of different aithbons, when the same hypervolume
reference point is used for all algorithms.

8.2.2.2Coverage

Coverage [5] is used to compare two algorithmsisltdefined as the fraction of
individuals, produced by the second algorithm, Whare dominated by individuals
produced by the first algorithm. For example Cibverage(Alg Alg) = F%, thenF
percent of algorithm’sAlg, individuals are dominated by individuals Afg; (one or
more, we do not know how many). Whé&overage(Alg Alg) =100% at least one
individual from Alg dominates all individuals produced Aig,.

This metric is used for determining which algorittas a better solution quality
than the other. Coverage is more suitable for ewmlg solution quality than
hypervolume is.

8.2.2 Multi-objective Algorithms

We present next four of the most representativeluteoary algorithms, available
through FADSE, which we used in this research: NSGAPEA2, OMOPSO and
SMPSO.

8.2.2.1INSGA-II

Non dominated Sorting Genetic Algorithm (NSGA-1Q16] starts from a randomly
generated initial population, which is evaluated. @&fspring population is obtained by
means of crossover and mutation. After the offgpria also evaluated, the two
populations are composed into a single one andcedatcording to the domination
relationship. A fitness value is assigned to thebviduals, which takes into consideration
the previous sorting and a crowding measuremerd.cfowding specifies the density of
these individuals on the Pareto front. The nextutetpon is formed by the best
individuals according to their fitness.

8.2.2.3SPEA2

Strength Pareto Evolutionary Algorithm (SPEA2) [65h genetic algorithm that uses an
archive of non-dominated individuals. The fitnegseach individual I) is based on its
strength, i.e. how many individuals it dominates.atv fithess is computed as the sum of
the strengths of the individuals that dominiat€o this raw fitness, density information is
added. This density is defined as the inverse efdistance to the neardét neighbor
individual (is a parameter of the algorithm). SPEA2 updatearithive by keeping only
the best individuals from the offspring populatiamd the archive. The updated archive
represents the new population with which the atgaricontinues.

128

Application Driven Automatic Design Space Explooatifor System-on-Chip
Architectures

8.2.2.40MOPSO

OMOPSO (Our Multi-objective Particle Swarm Optintina) [134] is a Particle Swarm
Optimization (PSO) algorithm, which is inspired ttne flight of birds in search for food.
A swarm (population in genetic algorithms’ termiogy) has many particles
(individuals), which “fly” through space followinthe best performing particle at that
moment. Each particle is characterized by two patam: position and speed. As every
particle tries to get closer to the current bestiga, its two parameters change. The
change takes into account both the current globat Bnd the particle’s personal best
solution found so far. Based on this change, thiégha gets a new position and will be
reevaluated. After all the particles are evaluatiked,new global best particle is selected,
the personal bests are updated and this entireegsds reiterated. Obviously, a multi-
objective PSO algorithm can have multiple globathwarticles (leaders). The leader is
chosen using a sorting mechanism similar with tine anplemented in NSGA-II.
OMOPSO has an extra step in which some of the ithdal's genes are changed using
mutation.

8.2.2.5SMPSO

Speed constrained Multi-objective Particle Swarnti®jzation (SMPSO) [135] is an
algorithm similar to OMOPSO. The main differencetimt the particle’s speed is
constrained so that it does not get too high.

8.3 Design Space Exploration Workflow

The ideal DSE workflow for our purpose is to seaf@hthe best NoC architecture for
every possible mapping of IP cores onto NoC tifes.each possible mapping we would
have to search the most suitable NoC design. Ea¢hdésign would be evaluated using
UniMap’s ns-3 NoC simulator. The complexity of tlapproach isC, ., pse=,P. IN[C,

wheren is the number of NoC nodesis the number of IP corel,is the number of NoC
architectures evaluated for each mapping@msithe number of IP core types that can be
used for the cores that execute the application. The first tdescribes the total number
of possible mappings, i.e. in how many waysores can be arranged omdNoC tiles.

This number is factorial in sizeN = HPk, wherep is the number of (ns-3) NoC

parameters andP is the number of possible values that paramétemay take.

AlsoC = H c, » Where ¢ is the number of IP cores that can execute thes @ssigned to

core k=1c (we consider a heterogeneous system, i.e. notcarg/ is suitable to any

task) N andC are exponential numbers. It is obvious tBatapseis a very big number.
For example, for a small NoC with= 16 nodes, there are 16! possible mappings=of
16 IP cores. If our NoC has (only) four parametesssh with ten values, then N =*10
Also, let us consider th& = 10, i.e. for each group of tasks we have ten typesods
that can execute them. Thi@igeapse= 16!'10°°~ 210°%. If each simulation would take
no more than one second (!), then we would neec e 63.0°* years to perform an
exhaustive search (on a single core system). Obljidhis approach needs a tool like
UniMap to heuristically search among the total nemtif possible mappings. A tool like

129

Application Driven Automatic Design Space Explooatifor System-on-Chip
Architectures

FADSE is also needed to limit the number of simredafoC designs (we gain speed but,
we find only near optimal solutions). Even so, tBISE approach would be extremely
time consuming. We would still require more thar0 3@ars for just ten thousands
mappings and ten thousands SoC designs evaluatedn@eping (one second per
simulation).

The above DSE process is essentially a DSE inla &fproach (an inner DSE).
UniMap DSE encapsulates the FADSE. We will make M8t workflow faster if we
decouple UniMap DSE from FADSE DSE. This means waikite each mapping on the
same, single, SoC architecture. Then we use FADSEearch for the best SoC design
only for mappings from the Pareto front found withiMap DSE. The complexity of this
DSE workflow is Cyampse.ranse =nP. + PIN[C, P << P, where P is the number of

UniMap DSE Pareto mappings. It is obvious tRafimapose,Fapse< Cideainse (at the
expense of getting farther away from the optiméutsans). For the above example, if we
consider ten Pareto mappings found with UniMaps #pproach will drastically reduce
the search time from 300 years to just 13 days. é¥aw this second DSE workflow is
still very time-consuming because a simulation wilbst like take more than just a
second.

Rather than using a simulator for evaluating eaapping generated by UniMap
on a default SoC architecture, we can use an anatytdel to find out which mapping is
better. Obviously this further reduces the accurmaicthe DSE process but, it makes it
faster and thus more feasible. The complexity ofe tDSE workflow is
Conimapanalytic Fanse. =(nPe)anayic T BINIC, B << P, where B is the number of best

analytic mappings. In this case, a mapping carnvhkiated in less than a second. Using a
bit energy model to estimate the communication gyneequired to send a bit of data
from one NoC node to another, we evaluated a mgppi®.04 ms on our HPC system
[106]. Considering for the above example that BOF We get a search time of 12 days.
Even if we got a similar time with the previous D8Brkflow too, this estimation is
obviously more realistic because previously we mmred that UniMap uses a simulator
for evaluating the mappings (only one second fomgating each mapping). In this case
UniMap works just with an analytic model; it doest mse the NoC simulator. We still
work (for this rough estimation) under the assumpthat a NoC simulation (generated
by FADSE) takes just a second but, we mentionwetan distribute simulations with
FADSE on High Performance Computing systems.

It is obvious thatCunimapanalytic,;absE< Cunimappse,Fapse< Cideanse Because of
this, we use the third DSE workflow in this reséarthe following figure illustrates our
proposed application driven automatic design spapéoration workflow for System-on-
Chip architectures.

130

Application Driven Automatic Design Space Explooatifor System-on-Chip

Architectures

- - - - - - - - -7 - - - 'I
| Map cores Save best Select |
mappings mapping
| onto NoC Mappings |' TREE
| database |
| Output runtime, energy, area |
| |
| |
Simulate SoC
| ns3NoC coreal e
simulator IP cores |
| N
|
| UniMap|

_FigTOO Eplicﬁon driven DSE workflow for SoC designs

Our DSE workflow starts with mapping applicatiomg@NoC architectures using
UniMap’s algorithms. The mappings are evaluated bgtimating the NoC
communication energy with the analytical model fr8ettion 3.1.3.2. The best solutions
found are saved into a database.

For each application, FADSE searches for the $e6t design by considering the
first ten best mappinds Note that we select these mappings from all besppings
found by all UniMap mapping algorithms: Simulatechn®aling, Branch and Bound,
Optimized Simulated Annealing and Elitist Genetilggithm and Elitist Evolutionary
Strategy, with all their variants, evaluated in Qlea 7.

Then we configure FADSE to start a DSE processedrby a multi-objective
algorithm. FADSE evaluates different System-on-Clighitectures. Firstly, it selects the
type for each IP core. The given mapping alreadytaios information about what IP
core will execute what task. However, FADSE wil with other compatible IP cores as
well. Any IP core capable of executing a task isstdered compatible with that task.
Note that the analytical model used for obtaining best mappings does not account for
IP core types. Secondly, it instantiates a SoCitacture by placing the selected IP cores
onto the nodes of a NoC that it configures. Finatlgalls UniMap’s ns-3 NoC simulator.
We model the tasks’ execution using the approadsqmted in Section 4.2.2. The
network communications are created using our nétvikaffic generator (see Section
4.3.9). ns-3 NoC measures application runtime, 8o€rgy and SoC area. These are the
three objectives of our DSE workflow.

We use the E3S [56] IP core library, which providista about the power
consumed by each core while executing a certaik &l while idle and the area
occupied by every core.

18 A higher number of best mappings may be used dpgon how many resources are available

131

Application Driven Automatic Design Space Explooatifor System-on-Chip
Architectures

For our NoC architecture, power and area metriesvagasured using ORION 2.0
[96], which is integrated with UniMap’s NoC simutat(see section 4.3.10). We work
with the Network-on-Chip total power, which incledkeakage and dynamic power for
routers and links. Similarly, NoC area is the sumoaters and links area.

We measure application runtime by running the apgibn for a specified
number of CTG iterations. We determine the numle€ DG iterations empirically, so
that the simulations run fast enough so that out P&cess ends in a feasible amount of
time.

The output of this workflow is a Pareto front witie “best” (near optimal) SoC
configurations, for a particular application.

In the next section we give details about how #yawe performed the
simulations, on which benchmarks, what architettpeaameters we varied and how
UniMap and FADSE were configured. We must point thatt, during the workflow, the
NoC topology is kept unchanged. This is becausetdpelogy is basically the single
NoC architectural element used by the mapping dhgos. Changing it would lead to
inconsistencies, i.e. doing and comparing mappfogglifferent NoCs. Obviously, our
workflow may also be applied for different NoC tépgies. By doing so we could also
determine the most suitable NoC topology. Howetleils would require adapting our
application mapping algorithms for these other Noologies. Only then we will be
able to obtain the best mappings for other NoC ltapes.

8.4 Simulation Methodology

We chose to work with four of the benchmarks pres#im Chapter Stelecom MPEG-

4, H.264 (CTG 0) and VOPD (CTG 0). Note that wespr# in this thesis only some
preliminary results. We plan to continue with tresearch. In the future we will evaluate
more applications and we will give more qualitatarel quantitative results.

For each of the four benchmarks, we selected teetén best mappings that we
obtained with all our algorithms from UniMaielecomis a 30 cores application, mapped
on a 6x5 2D mesh NoC. MPEG-4, H.264 (CTG 0) and BOkave 12, 16, and
respectively 16 IP cores. They are mapped onto 4x3&, and respectively 4x4 2D
meshes.

We chose the number of CTG iterations after periiogmsome preliminary
simulations that showed us approximately how muucte teach simulation takes. We
wanted to simulate each benchmark for just sevenalites, not more than ten. Thus, we
used ten CTG iterations foelecom two for MPEG-4, four for H.264 (CTG 0) and one
for VOPD (CTG 0).

For all benchmarks we used the E3S IP core libr@mgcetelecomis an E3S
benchmark, we know exactly which core types cartabeeeach of its tasks. On average,
we have 20 core types for evapfecomtask. The other three benchmarks are not from
E3S benchmark suite. Therefore, we do not know wbegs can execute their tasks and
in what time. However, for each IP core, E3S spegid generic task for which we have
the execution time and power consumption. We censitl all tasks from MPEG-4,
H.264 and VOPD as generic. Thus, all E3S IP coaesbe used to execute every task of
these three benchmarks. The E3S IP core librartasta total of 34 cores.

We vary the following Network-on-Chip parametengtwork clock frequency,
input buffer size, flit size, packet size and rogtiprotocol. The NoC clock frequency

132

Application Driven Automatic Design Space Explooatifor System-on-Chip
Architectures

varies from 100 MHz to 1 GHz, in steps of 100 MHhe size of the network input
buffers is varied uniformly, from one to ten flifBhe flit size is expressed in bytes. It is
given by a geometric progression with ratio 2, itiigal value 4 and the final value 256.
The packet size is measured in number of flitgaties from two flits, up to ten. Finally,
we use only Dimension Order Routing but, we allowXY or YX routing. The network
bandwidth is automatically set, so that one flih ¢ transmitted in a single NoC clock
cycle.

Therefore, the searcl

space determined by all possib Benchmark Search space size
Network-on-Chip grchitecture< telecom 1260020" ~ 1.3510"
) MPEG-4 1260@4% ~ 3107

has a size oN = 12600 The
search space size given by the
core types) is, however, much
bigger.

H.264 (CTG 0) 1260034° ~ 410°°
VOPD (CTG 0) 126084° ~ 410°°

Fig. 101 The search space size

Regarding our design space exploration tool, wdigored FADSE to run with
four multi-objective algorithms: NSGA-Il, SPEA2, MO and OMPSO. We decided to
stop the algorithms after 50 generations.

We configured NSGA-II as indicated in [116]. Thiere, we used a population of
100 individuals. We employed standard genetic dpesasingle point crossover, bit flip
mutation and binary tournament selection. Cross@rebability was set to 90% and
mutation probability was set to 3%. tAlecomchromosome has the highest number of
genes, 35, because we vary five NoC parameterbacalise it is the benchmark using
the biggest NoC (30 cores placed onto a 6x5 2D jnésually, the mutation rate for bit
flip mutation is1 / n wheren is the number of genes (1 / 353%). SPEA2 was
configured identically to NSGA-II.

Similarly, SMPSO and OMOPSO used a swarm of 100gbss. The archive size
is also 100.

8.5 Experimental Results

We show next some preliminary results obtained wailr previously presented
application driven design space exploration teammitpr System-on-Chip architectures.
We managed to explore all ten best mappings jush&telecombenchmark. For the rest
of benchmarks we explored only the first best magpi

We start with theéelecomDSE. In the next figure we use the hypervolumerimet
to show how our four DSE algorithms progress whéarching for the best SoC designs
for thetelecombenchmark. We obtained hypervolumes for each D§a&tithm, on every
one of the tetelecommappings. Then we computed the average hypervolume

133

Application Driven Automatic Design Space Explooatifor System-on-Chip
Architectures

0.29 -

0.27

0.25 ~

0.23 A

0.21 ~

Average hypervolume

0.19 ~

0.17

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Generation Count

—4— NSGA-Il -0~ SPEA2 < SMPSO —O—OMOPSO‘

Fig. 102 Average hypervolumes over all ten best tftom mappings

It can be seen that the two genetic algorithms (AN$iGand SPEA2) obtained the best
hypervolumes. NSGA-II has a slightly faster conesrce speed than SPEA2. In the last
ten generations, both of them saturate; they ngdofind significantly better solutions.
SMPSO performs better than OMOPSO but, both PSOriigns perform worse than
the genetic algorithms in terms of solution qualitye used the same hypervolume
reference point). However, they have the fastesivegence speed. Only after 8-9
generations the genetics recover and surpass theaRBrithms.

We also compared the four algorithms using the @mes metric (results are
omitted due to space constraints). We concludedSR&EA?2 has the best overall results.
The following figure shows the Pareto front obtaingith SPEA2, by combining the
Pareto fronts from all tetelecommappings.

134

Application Driven Automatic Design Space Explooatifor System-on-Chip
Architectures

2 mapping 1 +
: mapping 3
0,045 ¢ napping o
ﬂﬁﬂggﬁ [P mapping E D
0 aee [ff ke g
0.0452 nabping .
arnd57 | napping ¢
00ace [paping §
0.0451 | N
0,1 p—
0,15
0,2
0,25
Energy [Joule]
0,35 g
0,4
0.43 =% @ 100 1o 120 130

30 ;10 Gl
Area [mm™2]
Fig. 103 SPEA2 Pareto front, for telecom

We observe that the Pareto front contains solutitora all eight of the ten bestlecom
mappings. We obtained the best energy consumptiin tie eight mapping. The
smallest area was given by mappings three and\fh exactly the same area, the third
mapping has a better energy, while the fifth h>er application runtime. Finally, the
lowest application runtime was found on a SoC des@responding to mapping eight.

It is interesting to see that we did not obtaia tiest energy with the first best
mapping, which analytically gave us the lowest Nlm@hmunication energy. This can be
due to several facts. Firstly, we analytically mstied only the NoC communication
energy. With this approach we compute the entir€ 8oergy (IP cores energy is also
included). Secondly, the analytical model is unataecapture the dynamic network
effects (network congestions). Thirdly, FADSE daes obviously perform an exhaustive
search. It is possible that we might get bettergyneesults with mapping one than with
mapping eight. This shows the need to perform bettploration of the design space.
Using domain-knowledge to constrain the searchespad applying fuzzy rules are two
approaches that could improve the DSE techniqué][12

Finally, we combined all the Pareto fronts obtdimeth all our algorithms, for all
tentelecommappings.

135

Application Driven Automatic Design Space Explooatifor System-on-Chip
Architectures

NSGA-II, m 1 +
NSGA-II, m 2
NSGA-II, m 4 ¥
NSGA-II, m 5 [
NSGA-II, m 6
NSGA-1I, m 7 ©
—0.0482 P, 1
Jaﬂggé - o SPEAZ, m 3 A
v 0,046 | SPEAZ, m &
=0,0459 F 'y SPERZ, mE W
So,0458 | xil EEEEE m g &
0,0457 b o
0.0455 } SPEAZ, m 10 +
0,0455 b
0,0454 F {_% &

Area [mm™2]

Fig. 104 Combined Pareto front for telecom benchmdr

It can be observed that all the solutions foundh8MPSO and OMOPSO are dominated
by the solutions found with the genetic algorithé#ile in terms of SoC area the best
solutions are the ones found with SPEA2 (with magpi3 and 5), in terms of energy and
runtime, NSGA-II found, with mapping six, bettersutts than SPEA2 (with mapping
eight).

The following table summarizes the best SoC deasiigund for thetelecom
application. Due to space constraints, we do notvstine 30 IP cores selected for every
SoC architecture.

Objective | Algorithm | MaP NBOUf%fpargi[n etggfkl?t ; eﬁeorc groe(; Ap%“r?a“
] 9 ping | Frequency | “& size ciye | Routi [Joul%s]/ (mm A runtime
MHZ] | i) | [oytes] | [iits] | M9 [ms]
Energy NSGA-II 6 100 4 4 10 YX 0.09516 | 50.11 | 46.1144
Area SPEA2 5 200 1 4 10 XY | 0.15818 | 37.37 | 46.1132
Area SPEA2 3 400 1 4 10 YX 0.16793 | 37.37 | 46.1111
Runtime NSGA-II 6 900 4 32 6 YX | 0.34191 | 81.22 45.4

The lowest energy was obtained (in accordance with intuition) when the NoC
operated at the lowest frequency allowed by our D&Ekflow. The SoCs with the
smallest area use some of the smallest IP corss, &le NoC buffers are only one flit in
size. As compared with the best energy and runBm€ designs, the two area designs
use only 25% NoC buffering resources. The two desigvith the smallest area
essentially differ by the NoC frequency. The fagsiee uses a NoC that is twice faster.
The SoC with the best runtime rutedecomwith more than half a millisecond than the

136

Application Driven Automatic Design Space Explooatifor System-on-Chip
Architectures

other three SoCs, which are differentiated in teainspeed by only a few fractions of a
microsecond. The best runtime SoC architecture ralgoires a much faster NoC. It also
operates with bigger packets. All these reflectonsiderably higher energy and bigger
area. Finally, we also observe that routing al$lo@mces the architecture’s performance.
Our best SoC designs ftelecomuse both XY and YX routing protocols.

Now we continue with the MPEG-4 DSE. The followifigure presents the
hypervolume of each DSE algorithm, for the best IBPEmMapping found analytically.

0.95
0.93
0.91
0.89 -

0.87 o
0.85 | Tzﬁ:}y‘]ﬂ
0.83

0.81 /%H
0.79 ﬂ

077W

Hypervolume

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49
Generation Count
‘ —-4— NSGA-IIl -0 SPEA2 —<— SMPSO -e- OMOPSO ‘

Fig. 105 Hypervolumes for the first best MPEG-4 maping

The results obtained fdelecomare consistent with the ones presented here. Again
two genetic algorithms perform better than theiplartswarm optimization algorithms.
NSGA-II converges faster than SPEA2. In terms oéliqy of results it seems that
NSGA-II is the best. Again, SMPSO performed betitan OMOPSO. Like fotelecom
MPEG-4 results show us that it matters more thesscléne algorithm belongs to
(evolutionary or bio-inspired), rather than the@fpe implementation.

We computed the coverage, trying to choose the dgetithm from each class.
The results are presented in Fig. 106 and Fig. 107.

137

Application Driven Automatic Design Space Explooatifor System-on-Chip
Architectures

Coverage

1 5 9 13 17 21 25 29 33 37 41 45 49
Generation Count

‘—0— Coverage(NSGA-II,SPEA2) -0 Coverage(SPEA2,NSGA-II) ‘
Fig. 106 Coverage comparison between NSGA-Il and &A2, for MPEG-4

For the first generations no clear distinction tenmade between the two algorithms.
However, looking at the last generations, we cahelthat there are more individuals
produced by SPEA2 that dominate the NSGA-II indinl$. This contradicts the
hypervolume chart where NSGA-II seemed to perfoetidn. We thoroughly analyzed
the Pareto fronts obtained by the two genetic #@lyms. Some of the solutions
discovered by NSGA-II are better than the onesinbthby SPEA2 and some are worse
(in accordance with the coverage metric). It isdhtar establish the best one because it
depends on the requirements of the designer. 8i#l, results obtained by NSGA-II
seemed a little more spread in the objective space.

The same behavior can be observed between OMOREGMPSO. SMPSO
performed better from the hypervolume point of vidwt here OMOPSO is the best.
Again, we analyzed the Pareto fronts approximatardfrom our point of view SMPSO
had better results. We emphasize that this is geectile appreciation and for other
designers the order might be changed.

138

Application Driven Automatic Design Space Explooatifor System-on-Chip
Architectures

90%
80%91
70%
60% -
50% -
40% -
30% -
20% f,’“‘\v,
10% —\“
0% ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
1 5 9 13 17 21 25 29 33 37 41 45 49
Generation Count

—o— Coverage(SMPSO,0OMOPSO) -0 Coverage(OMOPSO,SMPSO)

Coverage

Fig. 107 Coverage comparison between SMPSO and OMSB, for MPEG-4

For our last comparison we selected the best &hgosi from the coverage point of view:
SPEA2 and OMOPSO. In the next figure we presenttwerage comparison between
the two algorithms. SPEA2 is clearly the best, lmmuhating almost 100% of the
individuals found by OMOSPO. OMOSPO does not doteirEmost any individuals
obtained by the genetic algorithm. It is interegtio observe that OMOPSO is better for
the first generations. This is because of the fastvergence speed of the PSO
algorithms.

Coverage

100%
80% W
60%

40% -
20% -
0%

1 5 9 13 17 21 25 29 33 37 41 45 49
Generation Count

—o— Coverage(SPEA2,0MOPSQO) -0- Coverage(OMOPSO,SPEA2)

Fig. 108 Coverage comparison between SPEA2 and OMGB, for MPEG-4

The following figure presents the most spread t®ai®nt, which was obtained

by the NSGA-II algorithm. Through interpolation va¢so obtained a surface grid that
gives us a better view of the Pareto surface.

139

Application Driven Automatic Design Space Explooatifor System-on-Chip

Architectures

Energy [Joule]

0.06
0.05
0.04
0.03
0.02
0.01

As expected, it can be observed that there is @ d&sign for the MPEG-4 application
that is best for all three objectives. The fastiestigns consume more energy and occupy
more area. The slowest architectures consume hesgyeand need less area. In between
we have a lot of solutions that are better for gn@nd worse for area and vice versa.

We conclude this preliminary research by presentirghypervolumes obtained
for the first best analytical mapping of H.264 afdPD benchmarks.

Hypervolume

0.285

0.28

0.275
0.27
0.265

0.26

0.255 1 Md

0.25

0.245

0.24 4
0.235 +

1 5 9 13 17 21 25 29 33 37 41

Generation Count

45

49

&~ NSGA-Il -0- SPEA2 —— SMPSO -8~ OMOPSO

Fig. 110 Hypervolumes for the first best H.264 mappg

140

Application Driven Automatic Design Space Explooatifor System-on-Chip
Architectures

0.98

0.96

0.94

0.92

0.9 4

0.88 -

Hypervolume

0.86 -

0.84

0.82

0.8 + T T T T T T T T T T T T
1 5 9 13 17 21 25 29 33 37 41 45 49

Generation Count

—4— NSGA-IIl 0— SPEA2 < SMPSO -e— OMOPSO
Fig. 111 Hypervolumes for the first best VOPD mappig

These H.264 and VOPD hypervolume results are iretaion with our previous results.

Our conclusion is that the genetic algorithms foatter solutions than the particle swarm
optimization methods. The PSO algorithms manag®twerge faster only for the H.264
decoder. For VOPD, SMPSO performs clearly bettan t@MOPSO. We also observe an
unsteady convergence speed for the PSOs. For a larmber of generations their
evolution is insignificant. Then, they manage todfiat least one significantly better
individual, which makes their hypervolume grow getble.

8.6 Summary

We have proposed an application driven automati€ B&ghnique for System-on-Chip
architectures. Our DSE method involves our develdgeiMap and FADSE [127].

The goal was that, for a given application, to endtically determine the best
SoC design, with the three objectives: SoC eneé8g¢; area and application runtime.

In order to speedup the exploration, we starteds#sch from some given NoC
mappings of our evaluated applications. These mnggpiare the best determined
analytically with all UniMap’s mapping algorithm$hen, using UniMap’s Network-on-
Chip simulator, FADSE searched for these mappihgsnost suitable IP cores and NoC
architecture so that our three objectives are magth

We showed that the best analytical mappings arenaogéssarily the best ones
when using a NoC simulator. This is because thelator also accounts for the network
dynamics. Another reason is that our simulator aisdels the processing elements.

We found the best energy SoC ($p@r telecomto be only 1.5% slower than
the fastest SoC (Seffor telecom while the energy is 2.6 times lower. However aitsa
is 34% bigger than the smallest SoC (gp@e found. So consumes more than 66%
more energy and its runtime is just a few microsdsdetter (than Se{ SoG occupies
the biggest area being 1.17 times bigger than,So1@ 62% bigger than SeC

Another conclusion is that the genetic algorithnesenclearly more suited for our
DSE workflow than the particle swam optimizationtheals. Still, the PSO algorithms
converge faster for most of the benchmarks.

141

“Difficulties increase the nearer we approach aoalg

Johann Wolfgang von Goethe

9 Conclusions and Further Work

This work addresses the Network-on-Chip applicatioapping problem. After we

introduced the novel Network-on-Chip paradigm ina@ter 2, we focused on the
mapping problem. Chapter 3 presents the problemgaWwith a state of the art on the
heuristic algorithms used to address it. In Chagterve show our developed unified
framework for the evaluation and optimization oftMerk-on-Chip application mapping

algorithms. In Chapter 5 we presented the bendksnased in our research, in this
emerging NoC research field that still lacks a déad benchmarking methodology. With
UniMap, we evaluated and optimized a simulated alimg algorithm using a domain-
knowledge approach (Chapter 6). We also evaluated optimized evolutionary

algorithms by proposing problem aware genetic dpesgChapter 7). Finally, in Chapter
8, we proposed and used a design space explomatdiflow for an application driven

automatic design space exploration for Systems4aip-GOur algorithms’ evaluations

were performed using both analytical models anduksitars. We considered single and
multi-objective approaches.

More precisely, this thesis makes the followingtabuations:

* An introduction to Network-on-Chip architecturesthvan emphasis on the most
common network topologies and routing protocolsiusehis research field;

= Taxonomy for the classification of Network-on-Chigpplication mapping
algorithms;

= State of the art regarding algorithms for Network&@hip application mapping;

= UniMap: a developed unified framework for the ewdion and optimization of
NoC application mapping algorithms;

= UniMap runs on High Performance Computing Systesiagujob schedulers to
automatically and optimally distribute simulations;

= Common model based on XML schemas for represeméat applications and
networks;

= UniMap integrates state of the art NoC applicatroapping algorithms like
Simulated Annealing and Branch and Bound;

» UniMap integrates jMetal, a library with single ebjive and multi-objective state
of the art evolutionary algorithms, which can bediss application mapping
algorithms;

» ns-3 NoC, our developed Network-on-Chip simulatavjth two router
architectures, three routing protocols, three switg mechanisms and k-ary d-
cube topologies;

= Network traffic generator based on communicatiotigpas of real applications,
described through Communication Task Graphs andiégijpn Characterization
Graphs;

* ns-3 NoC integrates ORION 2.0, a state of the @ot for Network-on-Chip
power consumption and area estimation;

» Using ns-3 NoC, we showed that the Irvine architerthelps at decreasing the
network congestion. The network is significantygd congested when data flits
are transmitted faster than head flits;

142

Conclusions and Further Work

With ns-3 NoC, we showed how increasing the netwmriers’ size improves
the NoC's average packet latency;

Using ns-3 NoC, we evaluated different network tog®s: 2D mesh, 2D torus,
3D mesh, 3D torus and hypercube. We concludedttpatiogies like tori and
hypercube can give better NoC performance than esesdn;

UniMap integrates the E3S benchmark suite and srtiee most used CTGs and
APCGs available in literature. Because NoC benckimgris still work in
progress, we effectively created our own benchraaite;

We propose and use for Network-on-Chip benchmarkiwg communication
patterns taken from a H.264 decoder system availalthe research community;
Using domain-knowledge, we developed an Optimizéthuted Annealing
(OSA) algorithm. It performs a dynamic and implicitre clustering and limits
the number of iterations per annealing temperatased on the given application
and network.

We showed that Simulated Annealing can be feasibie NoC application
mapping when domain-knowledge is used. OSA is apprately 99% faster than
a generic Simulated Annealing algorithm, withowgitg the solution quality;

The results obtained with OSA showed that Simul#®&edealing is feasible for
NoC 2D meshes larger than 10x10. Previous resasatdd the contrary;

OSA is comparable to Branch and Bound in terms efmory consumption and
speed. It mapped 97 cores on a 10x10 2D meshimeasiower by only 3% than
the time required by Branch and Bound;

As the problem size increases, OSA gives signifigabetter solutions than
Branch and Bound. The mappings found with BranahBound were with more
than 70% worse than OSA’s mappings when working) wibre than 64 IP cores;
We showed Branch and Bound’s limitations. This atgm was unable to map
an application with 215 cores, onto a 15x15 NoCahse more than 98% of the
search space was pruned;

We developed an Elitist energy- and performanceraw@enetic Algorithm
(EGA). EGA is integrated in jMetal;

We extended jMetal with the Position Based crossove

We evaluated EGA and an Elitist Evolutionary Sgst€dEES) using different
genetic operators (four crossovers, two mutationd Zalgorithm variants);

We concluded that evolutionary algorithms are sopé¢o algorithms like OSA,
for NoCs with tens, hundreds of nodes. We foundl floathe big benchmarks, all
the best solutions were given by evolutionary atgors (none by OSA);

We proposed a meta-heuristic algorithm consistihgroevolutionary algorithm
that uses as mutation operator a state of theplication mapping algorithm;
EGA and EES work better with OSA mutation than wstkiap mutation. OSA
integrated successfully into the Evolutionary Algams;

We designed two problem specific crossover opesatdoC Position Based and
Mapping Similarity. NoC Position Based crossoverpiaves the standard
Position Based crossover for our problem. Mappingil8rity crossover
exchanges information between the parent indivglualdoes not simply work as
a mutation operator, like the other state of the NwWC application mapping
crossover operators do;

143

Conclusions and Further Work

= With NoC Position Based crossover, EGA had the salsition percentage on the
big benchmarks;

= We found Mapping Similarity to be the crossover rapar that contributes the
most at obtaining a good mapping. It performed l@s50% - 60% mutation
probability. The rest of crossovers required highetation rates;

= We found EES to perform better than EGA. Althoughmanaged to improve the
genetic algorithm through our crossover operatsg)g an algorithm that works
only with (context-aware) mutation proved to betéret Finding a suitable
context-aware crossover for NoC application mappmgnore difficult than
finding an efficient context-aware mutation;

= EES with OSA mutation was the algorithm that madageconverge the fastest;

» Using two state of the art multi-objective algonitt (NSGA-11 and SPEA2) with
our genetic operators, we evaluated (with analyiiclels) the mappings in terms
of NoC communication energy and NoC thermal balafbe two objectives are
contradictory and, as such, our developed operatasnot lead to the best
performance. However, we did find the best soljdn terms of energy, with
OSA mutation. A suitable crossover operator for N@®C application mapping
problem is even more difficult to find if we consrdmulti-objective optimization;

»= UniMap connects with the Framework for Automaticsigm Space Exploration;

= We proposed an application driven automatic DesBpace Exploration
technique for System-on-Chip architectures. Thel geathat, for a given
application, to automatically determine the besit&y-on-Chip design, with the
following objectives: SoC energy, SoC area andiagfibn runtime;

= Using our developed ns-3 NoC simulator and FADSE, explored the NoC
architectural space for different real applications

= We showed that the best analytical mappings arenaoéssarily the best ones
when using a NoC simulator;

» The genetic algorithms (NSGA-II and SPEA2) wereadle more suited for our
design space exploration workflow than the partsskeam optimization methods
(SMPSO and OMOPSO). Still, the PSO algorithms coyee faster.

As future work, we intend to improve UniMap. We arderested in extracting
communication patterns from parallel applicatiombe first step will be to integrate
CETA tool (see Section 4.2.1.2.3). This will allayg to obtain Communication Task
Graphs from shared memory parallel programs. Thergkstep will be to similarly use
an MPI library that allows intercepting the comnuations from message passing
parallel applications.

Another direction for extending our unified franmw is to implement other state
of the art Network-on-Chip application mapping algons. For example, the
comparisons between OSA and Cluster Simulated Amgeésee Section 6.1) runtimes
are very likely to be unfair. This can be due teesal reasons: (1) OSA is written in Java
but, we do not know yet how CSA is implemented,@BA is energy aware and uses the
cost function from [40], while CSA is bandwidth aladency constrained, using the cost
function from [61] and (3) CSA does not specify thamber of generations per
temperature level.

Also, we consider further improving our developeaQ\simulator. Improving the

144

Conclusions and Further Work

router architecture with virtual channels and alocs is an example. This will bring our
router implementation closer to real router designs

Regarding our developed crossover operators (set#oB8€7.4) they are suitable
only for the communication energy objective. Theysinbe adapted to work in a multi-
objective case. Even OSA mutation was designed daly energy minimization.
Therefore, evaluation and optimization of such atgms, in a multi-objective context
will be more difficult. Using standard crossoverdamutation operators simplifies the
problem a lot but, such operators are not awatbeoproblem.

We also plan to continue our research regardindicagtion driven automatic
design space exploration for System-on-Chip archites (see Chapter 8). The presented
results are still preliminary. We intend doing maienulations so that we identify the
best SoC designs for applications other ttedecom too. We also intend to do a more
accurate modeling of our SoC designs by increasiagccuracy with which we simulate
the IP cores and by varying the NoC topology ad.w for the design space explorer,
we intend to use more domain-knowledge so thatameconstrain and better explore the
huge architectural space. We believe our approach be extended for performing
automatic design space exploration for High Peréaroe Computing systems.

Finally, we refer to a research niche that we idiedt during this PhD thesis but,
unfortunately we have not had enough time to exoyet. We believe that Network-
on-Chip application mapping problem can be addcessseing graph theory. More
precisely, we refer tgraph isomorphism, which is the problem of verifying if two
graphs are actually the same. Two graphs(Va, Ea) andN = (Vy, Ey) are isomorphic if
and only if there is &ijectivemappingM :V, -V, between the graph nodes, such that
the following equivalence is truee,e, UV, :(e,e,)0E, <« (M(g),M(e,))UE,.
This means a unique mapping between the correspgretiges of the two graphs is
required. For weighted graphs, the condition carextended to include the weights as
well. Subgraph isomorphism requires the mappin$yl to be onlyinjective Graph
monomorphism is a weaker type of subgraph isomorphism. Theveadgmce relation
must be just an implication e,e, OV, :(e,e,)0E, = (M(e),M(e,))TE,).
Considering the above definitions and that the gnepphs A andN) are an Application
Characterization Graph (APCG) and, respectivelio& topology graph, the Network-
on-Chip application mapping problem can be viewed graph monomorphism problem.
Indeed, it is mentioned in [136] that the quadrassignment problem can be formulated
as a graph monomorphism problem. Currently, therena known polynomial-time
algorithm for the monomorphism problem [137]. Howevspecial graph types, like
planar graphs, can theoretically be solved in adintime [138]. Using the Boyer-
Myrvold algorithm [139], we tested for planarityl #he APCGs used in this work (see
section 5.3). All of them proved to be planar ¢iapWe also integrated in UniMap the
VF2 [140] graph matching algorithm and used it &tedmine if an isomorphism exists
between any APCG and its corresponding NoC topobtygph. We found none but, this
is understandable because we should search formmpbisms, not for isomorphisms.
We found little NoC research using this idea. Graggmorphism is used in [141] to
identify the isomorphically unique NoC topology phs. VF2 algorithm is used in [142]
to perform subgraph isomorphism in order to decaepan APCG into a set of
predefined communication pattern graphs. We belsggy@oaching the NoC application
mapping problem as a graph monomorphism problesoith researching.

145

10 Glossary

This section presents an alphabetical list of te@irterms used in this work, mainly
from the field of Networks-on-Chip architecturesieldefinitions of these technical terms
are mainly taken from [24], [1], [25], [43].

Adaptive routing

Bandwidth

Bisection bandwidth

Broadcast

Channel

Circuit switching

(Network) collision

Dateline

Deadlock

An adaptive routing algorithm uses informatidooat the
network’s state in making routing decisions. This
information may include the status of a node ok,lithe
length of queues for network resources, and hisbri
channel load information. Such an algorithm conside
multiple paths and chooses the one which is matitde.
See alsorouting, deterministic routingand oblivious
routing.

The maximum amount of information that can be
transmitted along a channel, in a unit of time.idt
measured in bits/s. See atdmnnel

The sum of the bandwidths of the minimum setlafrmels
that, if removed, partition the network into two ued
unconnected set of nodes. See alodwidth channel

A broadcast is a multicast in which a packetestdo all
destinations. See alsoulticast

Consists of a transmitter, link and receiverallows the
(digital) information to flow between the network
interfaces attached to it. See disd.

Switching mechanism by which the path from therse to
the destination is established and reserved uihtd t
message is transferred over the circuit. See pisiket
switching

A network collision occurs when more than oneickev
attempts to send a packet on a network segmeln¢ ataime
time. Collisions are resolved by discarding anceneléng

(one at a time) the competing packets. Seepsket

A conceptual line across a channel of a ring oetwor
within a single dimension of a torus).

A situation when a packet waits for an event tetnot
occur; for example when no message can advancedowa
its destination because the queues of the mesyatgEns
are full and each is waiting for another to maksoteces
available. See aldivelock

146

Glossary

Deadlock-free
deterministic routing

(Node) degree

Deterministic routing

(Network) diameter

Direct network

Design Space
Exploration (DSE)

Fault

Fault tolerance

Flit

Flow

Flow control
mechanism

A deterministic routing algorithm that guarantebat a
deadlock will never arise. See aldeadlock routing and
deterministic routing

The number of channels entering and leaving eacte.
See als@hannel

A routing algorithm is deterministic (or non-adap) if

the route taken by a message is determined solelysb
source and destination, and not by other trafficthe
network. A deterministic routing algorithm alwaysooses

the same path between two nodes, even if there are
multiple possible paths. See alswiting, oblivious routing
andadaptive routing

The maximum number of links that must be trawérse
send a message to any node along a shortest peth (t
length of the maximum shortest path between any two
nodes).

Network that has each node connected to eadheodther
nodes. See alsndirect network

Design Space Exploration (DSE) is the process of
searching through the possible hardware or soft@esgn
points to find an optimal design. DSE can both be
structural (different components) and parametiie(f set

of components of which the parameters are tuned).

A requirement, design, or implementation flandexiation
from a desired or intended (logical) state. Als@wn as
defect although defect more often refers to the physical
State.

The ability of a network to detect, isolate ardaver from
faulty resources. See altlt.

Aflow control uiit is the minimum unit of information that
can be transferred across a link and either acdepte
rejected. It may be as small as a phit or as lasga packet
or message. See algbit, packetandmessage

A flow is a sequence packets traveling betweesingle
source-destination pair and is the unit at whichligy of
service is provided. It is possible for a sourceestination
to support multiple flows concurrently. See alsacket
quality-of-service (QoS)

Determines when the message, or portions of dyas
along its route. Note that is common in literat[8to say
that flow control equals switching. See alswitching
mechanism

147

Glossary

Hard error
Hard real-time

Header

Hot-spot

Indirect network

Jitter

Latency

Link
Livelock

Load balance

Message

A permanent, unrecoverable error. See si¢gberror.

A system wherein not producing the result of geration
before its deadline expires is equivalent to prauyche
wrong result. See alsoft real-time

The front of the packet. It usually contains tbating and
control information so that the switches and nekwor
interface can determine what to do with the padeeit
arrives. See alspacketandtrailer.

A hot-spot resource is one whose demand is sogmifly
greater than other, similar resources. For example,
particular destination terminal becomes a hot-spot
shared memory multicomputer when many process&s ar
simultaneously reading from the same memory lonatio
(for example, a shared lock or data structure).

Network that has nodes connected only to a Spestibset
nodes, which form the edges of the network. See als
direct network

The maximum difference in the latency between two
packets within a flow. Low jitter is often a reqement for
video streams or other real time data for which the
regularity of data arrival is important. The jitttmes the
bandwidth of a flow gives a lower bound on the sufe
buffer required. See algiacket flow andlatency

The time required to deliver a unit of data (Ulyua packet
or message) through the network, measured as dpsezl
time between the injection of the first bit at thaeurce to
the ejection of the last bit at the destinatione $#so
packetandmessage

A bundle of wires or fibers that carries an agadmnal.

A situation when the routing of a packet nevadieto its
destination (can only occur with adaptive non-miaim
routing). See alsdeadlock

The measure of how uniformly resources are betiliged

in a network. A network is load-balanced if all the
(expensive) resources tend to saturate at the séfered
traffic.

A message is the logical unit of data transfevigled by
the network interfaces. Because messages do nayslw
have a bounded length, they are often broken imtaller
packets for handling within the network. See gdaoket

148

Glossary

Minimal routing

Multiprocessor
System-on-Chip
(MPSoC)
Multicast

Network-on-Chip
(NoC)

Non-minimal routing

Oblivious routing

Packet

Packet switching

Payload
Phit

Quality-of-Service

(QoS)

Routing algorithm that considers only the shdrteath
routes from source to destination. See aisating and
non-minimal routing

A system-on-chip that uses multiple, often heger®ous,
processors. See alSoC

A multicast packet can be sent to multiple desioms. See
alsopacketandunicast

A Network-on-Chip (NoC) consists of a number of
interconnected heterogeneous devices (e.g. gerwral
special purpose processors, embedded mem
application specific components, mixgignhal /O
cores) where communication is achieved by isgn
packets over a scalable interconnection netwibik
global wiring is used by a Network-on-Chip. Wiring
resources are shared by the communicating devices.

Routing algorithm that considers all the possipkghs
from source to destination. See alsoiting and minimal
routing.

It includes deterministic routing. The route takby a
message is determined solely by its source andndésn
but, the same path is not chosen always. For exanapl
random algorithm that uniformly distributes traffacross
all of the paths is an oblivious algorithm. Seeasiting,
deterministic routingandadaptive routing

A self-delimiting sequence of digital symbolstthagically
consists of three parts: a header, a payload arder. See
alsoheader payloadandtrailer.

Switching mechanism by which the message is braoki®
a sequence of packets. Packets are individuallgdoinom
the source to the destination. See alswuit switching

The part of the packet containing the data tramesdh
across the network. See afsacket

A physical unt is the minimum size datagram that can be
transmitted in one link transaction. See dlgo

The bandwidth, latency, and/or jitter received hy
particular flow or class of traffic. A QoS policy
differentiates between flows and provides servioethose
flows based on a contract that guarantees the @o&ded

to each flow, provided that the flow complies with
restrictions on volume and burstiness of traffic.

149

Glossary

Real-time

Reliability
Router

Routing algorithm

Saturation

Self-adaptive system

Soft error

Soft real-time

Store-And-Forward
(SAF) switching

Switch

Switching mechanism

System-on-Chip (SoC)

Throughput

A real-time system is a system whereby the comess or
quality of the output not only depends on the pomdu
value, but also on when this value becomes availdbde
alsohard real-timeandsoft real-time

The probability that a network is working at aeqn point
in time.

Network component which drives the informatiolugh
the network.

The routing algorithm of a network determines athof
the possible paths, from source to destinationuaesl as
routes and which route is taken by each partiquéaket.

A resource is in saturation when the demandsgoeliaced
on it are beyond its capacity for servicing thosendnds.
For example, a channel becomes saturated when
amount of data that wants to be routed over thenrodla
exceeds its bandwidth. See atsmdwidth

A self-adaptive system contains control logicléb the
system modify its execution based on the input and
environment without requiring external intervention

the

A soft error is a transient error. Hardware counis to
work correctly after the soft error occurred, blé tdata
may be corrupted permanently. See &laa error.

In a soft real-time system the result of a caltiah that
becomes available only after its deadline has pasdeat
worst cause graceful degradation, but otherwisesyiseem
will keep functioning correctly. See albkard real-time

Packet switching mechanism where the entire parske
received by a switch before it is forwarded to et link.
See alsgacket switching

Network component that provides the means toerout
information from the source node to the destinatiode.

Determines how and when the data in a messagerses
its route. See alsoircuit switching packet switchingand
flow control mechanism

A System-on-Chip is a system whereby all compteh
the entire computing system have been integrated on
single integrated circuit.

The amount of traffic (in bits/s) delivered tettestination
terminals of the network.

150

Glossary

Topology = The physical interconnection structure of thewoek. It
specifies the connection pattern of the networkdes.

Traffic = The sequence of injection times and destinationghe
packets being offered to the network. This sequesce
often modeled by a static traffic pattern that desi the
probability a packet travels between a particulaurse-
destination pair and an arrival process.

Trailer = The end of the packet. It typically contains eigbecking
code. See alspacketandheader

Unicast = A unicast packet has a single destination terin{aa
opposed to multicast). See alsalticast

Virtual Cut-Through Packet switching mechanism which does not buféa at

(VCT) switching the output. It allows data to cut through to theuiof the
next router, before the whole packet was receivethe
current router. It can block entire routing patims the
network when a message gets blocked somewhere in an
intermediate node. In such a case, VCT switchirls fa
back to SAF switching. See alsetore-and-forward
switching andvormhole switching

Virtual channel = A group of multiple buffers associated to the sgrhysical
channel.
Virtualization = Basic technique that separates workloads fronpktysical

hardware. It allows for running legacy software roew
hardware, for dynamically adapting applications to
changing hardware resources, and for isolatingnsoé
domains (to do dedicated resource provisioning,foor

security).
Worst-Case Execution = The Worst-Case Execution Time (WCET) is the matim
Time (WCET) execution time necessary for a part of a program to

perform its task assuming the worst possible
circumstances.

Wormhole switching Packet switching mechanism which, compared teuair
cut-through, buffers the flits in the nodes wheheyt
currently are. See alsartual cut-through switchingand

store-and-forward switching

151

11 References

[1] M. Duranton et al., “The HIPEAC VisionHIPEAC Roadmap2010. [Online].
Available: http://www.hipeac.net/system/files/LR 189 hipeac_roadmap-2010-
v3.pdf.

[2] J.L.Hennessy and D. A. Patters@omputer Architecture: A Quantitative
Approach, 4th Editiopdth ed. Morgan Kaufmann, 2006.

[3] R. Marculescu, U. Y. Ogras, L.-S. Peh, N. &gér, and Y. Hoskote, “Outstanding
research problems in NoC design: system, microctoire, and circuit
perspectives,Trans. Comp.-Aided Des. Integ. Cir. Sysl. 28, no. 1, pp. 3-21,
2009.

[4] G. Moore, “Cramming More Components onto Iméggd Circuits, Electronics
vol. 38, no. 8, pp. 114-117, Apr. 1965.

[5] G. E. Moore, “Excerpts from a conversationtw@&ordon Moore: Moore’s Law,
2005,”URL ftp://download. intel. com/museum/Moores_Ladédi
Transcripts/Excepts_A_Conversation_with_Gordon_Mopdf

[6] L. Vintan N.,Arhitecturi de procesoare cu paralelism la nivahdtrugiunilor.
Editura Academiei Romane, Bucstie2000.

[7] L. Vintan N.,Prediction Techniques in Advanced Computing Archites Matrix
Rom Publishing House, Bucharest, 2007.

[8] A. Florea and L. Vigan N.,Simulareagsi optimizarea arhitecturilor de calcul in
aplicaii practice. Editura Matrix Rom, Bucusgdi, 2003.

[9] L. Vintan N., “Diregii de cercetare in domeniul sistemelor multicorReVista
Roméa de Informati@ si Automatiez, ICI Bucureti, vol. 19, no. 3, 2009.

[10] C. Radu, H. Calborean, A. Crapciu, A. Gellert, and A. Elay “An Interactive
Graphical Trace-Driven Simulator for Teaching Bazediction in Computer
Architecture,” inThe 6th EUROSIM Congress on Modeling and Simulaf607,
p. 58.

[11] A. FloreaC. Radu, H. Calborean, A. Crapciu, A. Gellert, and L. \&n{
“Designing an Advanced Simulator for Unbiased BlaescPrediction,”
Proceedings of 9th International Symposium on AatanControl and Computer
Science2007.

[12] A. FloreaC. Radu, H. Calborean, A. Crapciu, A. Gellert, and L. ¥4n,
“Understanding and Predicting Unbiased Branché&3eaneral-Purpose
Applications,”Buletinul Institutului Politehnic lasi, Tome LIILYII), fasc. 1-4,
Section 1V, Automation Control and Computer Scieédeetion pp. 97-112, 2007.

[13] C. Radu, “Implementing a multicore Shared Memory Architeet using
Transaction Level Modelling with UNISIM,” Diplomargject (Bachelor), “Lucian
Blaga” University of Sibiu, Romania (in Romaniaapsrvisor Professor Lucian
Vintan, PhD), Sibiu, Romania, 2008.

[14] C. Radu, H. Calborean, A. Florea, A. Gellert, and L. Vimt4Exploring Some
Multicore Research Opportunities. A First Atteniph, Advanced Computer
Architecture and Compilation for Embedded Systdrasrassa (Barcelona), Spain,
2009.

152

References

[15] T. Bjerregaard and S. Mahadevan, “A surveyeskarch and practices of Network-
on-chip,”ACM Comput. Suryvol. 38, no. 1, Jun. 2006.

[16] K. Asanovic et al., “The landscape of paratiemputing research: A view from
berkeley,” Citeseer, 2006.

[17] P. Guerrier and A. Greiner, “A generic arelsiure for on-chip packet-switched
interconnections,Proceedings of the conference on Design, automainohtest in
Europe pp. 250-256, 2000.

[18] A. Hemani et al., “Network on chip: An arobdture for billion transistor era,” in
Proceeding of the IEEE NorChip Conferen2é00, pp. 166-173.

[19] W. J. Dally and B. Towles, “Route packetst wires: on-chip inteconnection
networks,” inProceedings of the 38th annual Design Automationf@ance Las
Vegas, Nevada, United States, 2001, pp. 684-689.

[20] D. Wingard, “Micronetwork-based integratioor ISOCs: 673,Proceedings of the
38th annual Design Automation Conferenge677—, 2001.

[21] E. Rijpkema, K. Goossens, and P. WielageR@uter Architecture for Networks
on Silicon,”IN PROCEEDINGS OF PROGRESS 2001, 2ND WORKSHOP ON
EMBEDDED SYSTEM$. 181--188, 2001.

[22] S. Kumar et al., “A network on chip architex and design methodology,” in
isvlsi, 2002, p. 0117.

[23] G. de Micheli and L. Benini, “Networks on @hiA New Paradigm for Systems on
Chip Design,"Proceedings of the conference on Design, automatnohtest in
Europe p. 418—, 2002.

[24] D. Culler, J. P. Singh, and A. GupRarallel Computer Architecture: A
Hardware/Software Approachist ed. Morgan Kaufmann, 1998.

[25] W. J. Dally and B. P. TowleBrinciples and Practices of Interconnection
Networks 1st ed. Morgan Kaufmann, 2004.

[26] J. Duato, S. Yalamanchili, and L. M. Niaterconnection Networks: An
Engineering Approachlst ed. Institute of Electrical & Electronics kmep, 1997.

[27] J. P. Bowen, “Hypercubed[Practical Computing magazine|Practical
Computing]} vol. 5, no. 4, pp. 97-99, Apr. 1982.

[28] J. Balfour and W. J. Dally, “Design tradeofts tiled CMP on-chip networks,” in
Proceedings of the 20th annual international coaefee on Supercomputing
Cairns, Queensland, Australia, 2006, pp. 187-198.

[29] J. Kim, W. J. Dally, and D. Abts, “Flattenedtterfly: a cost-efficient topology for
high-radix networks,” irProceedings of the 34th annual international synyras
on Computer architectur&san Diego, California, USA, 2007, pp. 126-137.

[30] C.J.Glass and L. M. Ni, “The turn model ataptive routing,J. ACM vol. 41,
no. 5, pp. 874-902, 1994.

[31] Ge-Ming Chiu, “The odd-even turn model foragtive routing,”|EEE
Transactions on Parallel and Distributed Systend. 11, no. 7, pp. 729-738, Jul.
2000.

[32] A. A. Chien and J. H. Kim, “Planar-adaptivaiting: low-cost adaptive networks
for multiprocessors,J. ACM vol. 42, no. 1, pp. 91-123, 1995.

[33] E. Salminen, A. Kulmala, and T. D. Hamalain&urvey of Network-on-chip
Proposals, OCP-IP, Mar-2008. [Online]. Available:

153

References

http://ocpip.org/uploads/documents/OCP-
IP_Survey of NoC_Proposals_White_Paper_April_20df8.p

[34] J. Hu and R. Marculescu, “DyAD: smart routiiog networks-on-chip,” in
Proceedings of the 41st annual Design Automationf€@ence San Diego, CA,
USA, 2004, pp. 260-263.

[35] “The Odd-Even Turn Model for Adaptive Routihg.

[36] A. Agarwal, C. Iskander, and R. Shankar, $&yrof Network on Chip (NoC)
Architectures & Contributions Journal of Engineering, Computing and
Architecture vol. 3, no. 1, 2009.

[37] M. Mirza-Aghatabar, S. Koohi, S. Hessabi, &ndPedram, “An Empirical
Investigation of Mesh and Torus NoC Topologies Uridiéferent Routing
Algorithms and Traffic Models,” ifProceedings of the 10th Euromicro Conference
on Digital System Design Architectures, Methods &odls 2007, pp. 19-26.

[38] H. Wang, L.-S. Peh, and S. Malik, “A TechngyeAware and Energy-Oriented
Topology Exploration for On-Chip Networks,” Proceedings of the conference on
Design, Automation and Test in Europe - Volum2d®5, pp. 1238-1243.

[39] L. Bononi, N. Concer, M. Grammatikakis, M. @mwla, and R. Locatelli, “NoC
Topologies Exploration based on Mapping and SinuraYlodels,” inProceedings
of the 10th Euromicro Conference on Digital Sysigesign Architectures, Methods
and Tools 2007, pp. 543-546.

[40] J. Hu and R. Marculescu, “Energy-aware magpan tile-based NoC architectures
under performance constraints,”Rnoceedings of the 2003 Asia and South Pacific
Design Automation Conferendg¢itakyushu, Japan, 2003, pp. 233-239.

[41] M. R. Garey and D. S. Johns@gmputers and Intractability: A Guide to the
Theory of NP-completened&/H Freeman & Co. New York, NY, USA, 1979.

[42] 1. Walter, I. Cidon, A. Kolodny, and D. Sigai, “The era of many-modules SoC:
revisiting the NoC mapping problem,” #nd International Workshop on Network
on Chip Architectures, 2009. NoCArc 20@809, pp. 43-48.

[43] U.Y.Ogras, J. Hu, and R. Marculescu, “Kegearch problems in NoC design: a
holistic perspective,” ifProceedings of the 3rd IEEE/ACM/IFIP international
conference on Hardware/software codesign and sysyenmesisJersey City, NJ,
USA, 2005, pp. 69-74.

[44] R. P. Dick and N. K. Jha, “MOCSYN: multiobjee core-based single-chip
system synthesis,” iRroceedings of the conference on Design, automainohtest
in Europe Munich, Germany, 1999, p. 55.

[45] C. Grecu et al., “Towards Open Network-on{€Beenchmarks,” ilProceedings of
the First International Symposium on Networks-onpCRrinceton, NJ, 2007, p.
205.

[46] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGRiask graphs for free,” in
Proceedings of the 6th international workshop omddeare/software codesign
Seattle, Washington, United States, 1998, pp. 97-10

[47] Y.-K. Kwok and I. Ahmad, “Static schedulintgarithms for allocating directed
task graphs to multiprocessor&CM Computing Surveys (CSURDI. 31, pp.
406-471, Dec. 1999.

154

References

[48] D. Towsley, “Allocating programs containingamches and loops within a multiple
processor system|EEE Transactions on Software Engineeringl. 12, pp. 1018—
1024, Oct. 1986.

[49] H. ElI-Rewini and H. H. Ali, “Static schedulirof conditional branches in parallel
programs,”Journal of Parallel and Distributed Computingol. 24, pp. 41-54, Jan.
1995.

[50] A.-H. Liu and R. P. Dick, “Automatic run-timextraction of communication graphs
from multithreaded applications,” irroceedings of the 4th international
conference on Hardware/software codesign and sysyenmesisSeoul, Korea,
2006, pp. 46-51.

[51] S. J. Russell and P. Norvigytificial Intelligence: A Modern Approaghst ed.
Prentice Hall, 1995.

[52] J. Hu and R. Marculescu, “Energy- and perfance-aware mapping for regular
NoC architectures,JEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF
INTEGRATED CIRCUITS AND SYSTEMSI. 24, no. 4, p. 551--562, 2005.

[53] J. Hu and R. Marculescu, “Communication aagktscheduling of application-
specific networks-on-chip JEE Proceedings - Computers and Digital Technigues
vol. 152, no. 5, p. 643, 2005.

[54] C. Radu, “The Current Stage in Developing some Automatssign Space
Exploration Algorithms for Networks-on-Chip,” Comjgun Science Department,
“Lucian Blaga” University of Sibiu, PhD TechnicakRort no. 2, Oct. 2010.

[55] T.Leiand S. Kumar, “A Two-step Genetic Algbm for Mapping Task Graphs to
a Network on Chip Architecture,” iRroceedings of the Euromicro Symposium on
Digital Systems Desigr2003, p. 180.

[56] “The Embedded System Synthesis Benchmark® $ER8S) website.” [Online].
Available: http://ziyang.eecs.umich.edu/~dickrp/e3s

[57] R. Pop and S. Kumar, “A survey of techniqé@msmapping and scheduling
applications to network on chip systemS¢hool of Engineering, Jonkoping
University, Research Repoxiol. 4, p. 4, 2004.

[58] S. Kirkpatrick, C. D. Gelatt, and M. P. VegctOptimization by Simulated
Annealing,”Sciencevol. 220, no. 4598, pp. 671-680, May 1983.

[59] S. J. Russell and P. Norvigytificial Intelligence: A Modern Approaghst ed.
Prentice Hall, 1995.

[60] M. A.. ElImohamed, P. Coddington, and G. F@xgcomparison of annealing
techniques for academic course scheduliRgdctice and Theory of Automated
Timetabling Il p. 92, 1998.

[61] S. Murali and G. D. Micheli, “Bandwidth-Comatned Mapping of Cores onto NoC
Architectures,” inProceedings of the Conference on Design, AutomaimhTest
in Europe - Volume, 2004, p. 20896.

[62] K. Srinivasan and K. S. Chatha, “A technidaelow energy mapping and routing
in network-on-chip architectures,” Proceedings of the 2005 international
symposium on Low power electronics and desgam Diego, CA, USA, 2005, pp.
387-392.

[63] C. M. Fiduccia and R. M. Mattheyses, “A LimeEime Heuristic for Improving
Network Partitions,” ifl9th Conference on Design Automation, 198282, pp.

175- 181.

155

References

[64] G. Ascia, V. Catania, and M. Palesi, “Multyjective mapping for mesh-based
NoC architectures,” iProceedings of the 2nd IEEE/ACM/IFIP international
conference on Hardware/software codesign and sysyemnmesisStockholm,
Sweden, 2004, pp. 182-187.

[65] M. Laumanns, L. Thiele, and E. Zitzler, “SPEAmproving the Strength Pareto
Evolutionary Algorithm for Multiobjective Optimizedn,” Evolutionary Methods
for Design Optimisation and Contrgbp. 95-100.

[66] R. Tornero, V. Sterrantino, M. Palesi, and/AJ.Orduna, “A multi-objective
strategy for concurrent mapping and routing in reeks on chip,” inProceedings of
the 2009 IEEE International Symposium on Parall@igtributed Processing
2009, pp. 1-8.

[67] C.Raduand L. Virtan, “UNIMAP: UNIFIED FRAMEWORK FOR NETWORK-
ON-CHIP APPLICATION MAPPING RESEARCH Acta Universitatis
Cibiniensis Technical Serigslay 2011.

[68] C. Raduand L. Virtan, “Towards a Unified Framework for the Evaluatam
Optimization of NoC Application Mapping Algorithnisn ACACES 2010 Poster
Abstracts Terrassa (Barcelona), Spain, 2010, pp. 163 - 166.

[69] C. Radu, “Unified Framework for Network-on-Chip ApplicatidMapping,”
unimap - Project Hosting on Google Cod@nline]. Available:
https://code.google.com/p/unimap/. [Accessed: Od-E&l1].

[70] “ULBS HPC cluster.” [Online]. Available: httffzzamolxe.hpc.ulbsibiu.ro/.
[Accessed: 07-Feb-2011].

[71] S. Murali and G. D. Micheli, “SUNMAP: a toébr automatic topology selection
and generation for NoCs,” iaroceedings of the 41st annual Design Automation
ConferenceSan Diego, CA, USA, 2004, pp. 914-9109.

[72] G. Ascia, V. Catania, and M. Palesi, “A Mu@ibjective Genetic Approach to
Mapping Problem on Network-on-ChipJUCS vol. 22, p. 2006.

[73] R. Marculescu and U. Y. Ogras, “It's a smatbrld after all: NoC performance
optimization via long-range link insertiongee Transactions On Very Large Scale
Integration Visi Systemsol. 14, no. 7, pp. 693-706.

[74] “A Survey of Network-On-Chip Tools,” 31-Mar-2Q. [Online]. Available:
http://scholarlyexchange.org/ojs/index.php/IJRR@#Ae/view/8207. [Accessed:
22-Aug-2011].

[75] “The ns-3 network simulator website.” [Onlindvailable: http://www.nsnam.org.

[76] F. Fazzino, M. Palesi, and D. Patti, “NoxiNetwork-on-chip simulator,URL:
http://sourceforge. net/projects/noxim [24.06. 2008

[77] B. Grot, J. Hestness, S. W. Keckler, and @tllY] “Kilo-NOC,” in Proceeding of
the 38th annual international symposium on Compatehitecture - ISCA '11San
Jose, California, USA, 2011, p. 401.

[78] Sheng Li, Jung Ho Ahn, R. D. Strong, J. Bo&kman, D. M. Tullsen, and N. P.
Jouppi, “McPAT: An integrated power, area, and tigimodeling framework for
multicore and manycore architectures,4@nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2009. MICRQ-2@09, pp. 469-480.

[79] S. Mahadevan, F. Angiolini, M. Storgaard,®.Olsen, J. Sparso, and J. Madsen,
“A Network Traffic Generator Model for Fast Netweok-Chip Simulation,” in

156

References

Proceedings of the conference on Design, AutomainchTest in Europe - Volume
2, 2005, pp. 780-785.

[80] “The EEMBC website.” [Online]. Available: htiffwww.eembc.org.

[81] “Simics.net - The technical support site foe Virtutech Simics full system
simulation platform,’https://www.simics.net2010. [Online]. Available:
https://www.simics.net/.

[82] “Tachyon Parallel / Multiprocessor Ray Traci@gstem,”
http://jedi.ks.uiuc.edu/~johns/raytrace@010. [Online]. Available:
http://jedi.ks.uiuc.edu/~johns/raytracer/.

[83] E. Ort and B. Mehta, “Java Architecture fokK Binding (JAXB),” Java
Architecture for XML Binding (JAXB)Online]. Available:
http://www.oracle.com/technetwork/articles/javaseéx-140168.html.

[84] “XSD: XML Data Binding for C++,"CodeSynthesis XSD - XML Data Binding for
C++. [Online]. Available: http://www.codesynthesis.cumoducts/xsd/.

[85] C. Radu, “Developing Network-on-Chip Architectures for Migbre Simulation
Environments,” Computer Science Department, “Lu@#ga” University of Sibiu,
PhD Technical Report no. 1, Jun. 2010.

[86] J.J. Duirillo, A. J. Nebro, and E. Alba, “TiMetal Framework for Multi-Objective
Optimization: Design and Architecture,” @EC 2010 Barcelona, Spain, 2010, pp.
4138-4325.

[87] D. E. Knuth,The Art of computer programming: Seminumerical athms
Addison-Wesley, 1981.

[88] D. H. BessetDbject-Oriented Implementation of Numerical Methokls
Introduction with Java & SmalltaJkFirst Edition. Morgan Kaufmann, 2000.

[89] S. Schlingmann, “Selbstoptimierendes Routmginem Network-on-a-Chip,”
Augsburg, Germany, 2007.

[90] S. E. Lee and N. Bagherzadeh, “Increasinghheughput of an adaptive router in
network-on-chip (NoC),” irProceedings of the 4th international conference on
Hardware/software codesign and system synth8sisul, Korea, 2006, pp. 82-87.

[91] Jingcao Hu, Umit Y. Ogras, and Radu Marcules8ystem-Level Buffer
Allocation for Application-Specific Networks-on-GhRouter Design,Computer-
Aided Design of Integrated Circuits and SystemEHHTransactions gnvol. 25,
no. 12, pp. 2919-2933, 2006.

[92] A. Gancea, “Simulator pentru proiectarea,exgeasi optimizarea unor tele de
interconectare tip NoC,” Diploma project (Bacheldbucian Blaga” University of
Sibiu, Romania (in Romanian, supervisor Professmidn Vintan, PhD), Sibiu,
Romania, 2011.

[93] E. Gamma, R. Helm, R. Johnson, and J. M.sWliss Design Patterns: Elements of
Reusable Object-Oriented Softwatest ed. Addison-Wesley Professional, 1994.

[94] W. Trumler, S. Schlingmann, T. Ungerer, JBahn, and N. Bagherzadeh, “Self-
optimized Routing in a Network-on-a-Chip,” presehé& the 20th IFIP World
Computer Congress, Milano, Italy, 2008.

[95] E. Salminen, K. Srinivasan, and Z. Lu, “Od®PNetwork-on-chip benchmarking
workgroup,”OCP-IP, Dec-2010. [Online]. Available:
http://www.ocpip.org/uploads/dynamic_areas/Cv8Xd&OEtFpWKPQsl/6189/No
C%20Working%20Group%200verview%20WP.pdf.

157

References

[96] A. B. Kahng, B. Li, L.-S. Peh, and K. Sama@RION 2.0: a fast and accurate
NoC power and area model for early-stage desigoesp=ploration,” in
Proceedings of the Conference on Design, AutomatiohTest in Europe3001
Leuven, Belgium, Belgium, 2009, pp. 423-428.

[97] D. Albonesi, “Power- and Reliability-Aware Bfioarchitecture,” IARCACES 2000
Course Terrassa (Barcelona), Spain, 2009.

[98] C. Raduand L. Virtan, “Optimizing Application Mapping Algorithms fotoCs
through a Unified Framework,” iRoedunet International Conference (RoEduNet),
2010 9th Sibiu, Romania, 2010, pp. 259 - 264.

[99] E. G. T. Jaspers and P. H. N. de With, “Cégbfor video display of multimedia
information,”|IEEE TRANS. CONS. ELECT®I. 45, p. 706--715, 1999.

[100] E.B.Van Der Tol and E. G. T. Jaspers, “iag of MPEG-4 decoding on a
flexible architecture platform MEDIA PROCESSORS 20Q0&l. 4674, p. 1--13,
2002.

[101] E.B.van der Tol, “Mapping of H.264 decoglion a multiprocessor
architecture,” irProceedings of SPIESanta Clara, CA, USA, 2003, pp. 707-718.

[102] S. Kirkpatrick, C. Gelatt, and M. Vecchi, p@mization by Simulated
Annealing,”Sciencevol. 220, no. 4598, pp. 671-680, May 1983.

[103] Simulated Annealing, Theory with ApplicatioBgiyo, 2010.

[104] Simulated AnnealingnTech, 2008.

[105] D. Fouskakis and D. Draper, “Stochastic @yation: a Review,International
Statistical Revieywol. 70, no. 3, pp. 315-349, Jan. 2007.

[106] C. Raduand L. Virtan, “Optimized Simulated Annealing for Network-ohig
Application Mapping,” inProceedings of the 18th International Conference on
Control Systems and Computer Science (CSC31i8harest, Romania, 2011, vol.
1, pp. 452-459.

[107] Z. Lu, L. Xia, and A. Jantsch, “Cluster-bds®imulated Annealing for Mapping
Cores onto 2D Mesh Networks on Chip,”"Rnoceedings of the 2008 11th IEEE
Workshop on Design and Diagnostics of Electronic@ts and Systems
Washington, DC, USA, 2008, pp. 1-6.

[108] SLD:: System Level Design Group @ CMU, “No&m an energy- and
performance-aware mapping tool for Networks-on-Chi.D:: System Level
Design Group @ CMU2010. [Online]. Available:
http://www.ece.cmu.edu/~sld/wiki/doku.php?id=shanedmap.

[109] H. Orsila, E. Salminen, and T. D. Hamalain®est Practices for Simulated
Annealing in Multiprocessor Task Distribution Prefnls,” inSimulated Annealing
I-Tech Education and Publishing KG, 2008, pp. 322-3

[110] C. Raduand L. Virtan, “Domain-Knowledge Optimized Simulated Annealing
for Network-on-Chip Application Mapping3ubmitted to an Elsevier journéep.
2011.

[111] C. Radu, “Optimized Simulated Annealing for Network-on-@Hpplication
Mapping,” Computer Science Department, “Lucian Blagniversity of Sibiu, PhD
Technical Report no. 3, Jun. 2011.

[112] A. E. Eiben and J. E. Smitimtroduction to Evolutionary Computin@pringer,
2008.

158

References

[113] C. A.C. Coello, D. A. V. Veldhuizen, and B. Lamont,Evolutionary
Algorithms for Solving Multi-Objective Problentsst ed. Springer, 2002.

[114] C. Radu, S. Mahbub, and L. Vian, “Developing Domain-Knowledge
Evolutionary Algorithms for Network-on-Chip Applitan Mapping,”Journal of
Systems Architecture (in review since July 25t4,]120

[115] G. Ascia, V. Catania, and M. Palesi, “Magprores on network-on-chip,”
International Journal of Computational IntelligenBesearchvol. 1, no. 1-2, pp.
109-126, 2005.

[116] K. Deb, A. Pratap, S. Agarwal, and T. Meyarn, “A Fast Elitist Multi-Objective
Genetic Algorithm: NSGA-1I,"EEE TRANSACTIONS ON EVOLUTIONARY
COMPUTATIONVvol. 6, p. 182--197, 2000.

[117] W. Hung, C. Addo-Quaye, T. TheocharidesX¥, N. Vijaykrishnan, and M. J.
Irwin, “Thermal-Aware IP Virtualization and Placentdor Networks-on-Chip
Architecture,” inProceedings of the IEEE International ConferenceCamputer
Design 2004, pp. 430-437.

[118] D. E. GoldbergGenetic Algorithms in Search, Optimization, and Mae
Learning 1st ed. Addison-Wesley Professional, 1989.

[119] G. Syswerda, “A Study of Reproduction in @etional and Steady State
Genetic Algorithms,” infFoundations of Genetic Algorithjns990, pp. 94-101.

[120] D. E. Goldberg and R. Lingle, “Alleles, Loand the Traveling Salesman
Problem,” inProc.\ of the International Conference on Genelgofithms and
Their ApplicationsPittsburgh, PA, 1985, pp. 154-159.

[121] D. Whitley, “A Genetic Algorithm Tutorial, STATISTICS AND COMPUTING
vol. 4, p. 65--85, 1994.

[122] L. J. Eshelman, R. A. Caruana, and J. Da8eh “Biases in the crossover
landscape,” irProceedings of the third international conference@enetic
algorithms George Mason University, United States, 1989,10p-19.

[123] K. Skadron, M. R. Stan, W. Huang, Sivakuiatusamy, Karthik
Sankaranarayanan, and D. Tarjan, “Temperature-aw@rearchitecture,” ir80th
Annual International Symposium on Computer Architex; 2003. Proceedings
2003, pp. 2- 13.

[124] C.C.N. Chu and D. F. Wong, “A matrix syesits approach to thermal
placement,” ilrProceedings of the 1997 international symposiurPloysical
design Napa Valley, California, United States, 1997, pf3—-168.

[125] W. M. Spears, E.-mail Pears, and A. N. NI, MCrossover or Mutation?,”
FOUNDATIONS OF GENETIC ALGORITHMSWI. 2, p. 221--237, 1992.

[126] C. Radu, “Evolutionary Algorithms for Network-on-Chip Apighation
Mapping,” Computer Science Department, “Lucian Blagniversity of Sibiu, PhD
Technical Report no. 4, Jun. 2011.

[127] H. Calborean, “Multi-Objective Optimizatiaf Advanced Computer
Architectures using Domain-Knowledge,” PhD The4isician Blaga” University
of Sibiu, Romania, 2011 (PhD Supervisor: Prof. BncVintan, PhD), Sibiu,
Romania, 2011.

[128] M. M. Kim, J. D. Davis, M. Oskin, and T. Atirs, “Polymorphic On-Chip
Networks,”SIGARCH Comput. Archit. Neywsol. 36, no. 3, pp. 101-112, 2008.

159

References

[129] A. Jalabert, S. Murali, L. Benini, and G. Dkcheli, “xpipesCompiler: a tool for
instantiating application specific networks on ¢hip Proceedings Design,
Automation and Test in Europe Conference and EttbdibiParis, France, pp. 884-
889.

[130] H. Calborean and L. Vintan, “An Automatic $)gn Space Exploration
Framework for Multicore Architecture Optimizatiohs) Proceedings of The 9-th
IEEE RoEduNet International Conferen&biu, Romania, 2010, pp. 202-207.

[131] H. Calborean and L. Vjan, “Framework for Automatic Design Space
Exploration of Computer Systemg\tta Universitatis Cibiniensis Technical Series
May 2011.

[132] R.Jahr, T. Ungerer, H. Calborean, and Int&n, “Automatic Multi-Objective
Optimization of Parameters for Hardware and Coden@pations,” inProceedings
of the 2011 International Conference on High Perfance Computing &
Simulation (HPCS 20112011, pp. 308 — 316.

[133] H. Calborean, R. Jahr, T. Ungerer, and Int&i, “Optimizing a Superscalar
System using Multi-objective Design Space Explorati in Proceedings of the
18th International Conference on Control Systent @mputer Science (CSCS),
Bucharest, Romanj&alea Grivitei, nr. 132, 78122, Sector 1, Buctiy@911, vol.
1, pp. 339-346.

[134] J.J. Duirillo, J. Garcia-Nieto, A. J. Neb@,A. C. Coello, F. Luna, and E. Alba,
“Multi-Objective Particle Swarm Optimizers: An Exjoeental Comparison.,” in
EMO’09, 2009, pp. 495-509.

[135] A. J. Nebro, J. J. Durillo, J. Garcia-Nie@,A. Coello Coello, F. Luna, and E.
Alba, “SMPSO: A new PSO-based metaheuristic fortruldjective optimization,”
in ieee symposium on Computational intelligence intigtteria decision-making,
2009. mcdm ’092009, pp. 66-73.

[136] D. E. Ghahraman, A. K. C. Wong, and T. AGraph Optimal Monomorphism
Algorithms,” IEEE Transactions on Systems, Man, and Cybernetids10, pp.
181-188, 1980.

[137] “Graph Monomorphism Algorithms|EEE Transactions on Systems, Man, and
Cyberneticsvol. 10, pp. 189-196, 1980.

[138] G. S. Lueker and K. S. Booth, “A Linear TirAtgorithm for Deciding Interval
Graph Isomorphism,Journal of the ACMvol. 26, pp. 183-195, Apr. 1979.

[139] “On the Cutting Edge: Simplified O(n) Plartgrby Edge Addition.” [Online].
Available: http://academic.research.microsoft.camiation/1734993. [Accessed:
07-Sep-2011].

[140] L. P. Cordella, P. Foggia, C. Sansone, an&¥é&hto, “Performance evaluation of
the VF graph matching algorithm,” pp. 1172-1177.

[141] N. K. Bambha and S. S. Bhattacharyya, “Japytlication mapping/interconnect
synthesis techniques for embedded chip-scale modgssors,TEEE Transactions
on Parallel and Distributed Systemsl. 16, pp. 99-112, Feb. 2005.

[142] U.Y. Ogras and R. Marculescu, “Energy- &wformance-Driven NoC
Communication Architecture Synthesis Using a Deawsitpn Approach,” pp.
352-357.

160

