
Optimizing Application Mapping Algorithms for
NoCs through a Unified Framework

Ciprian Radu, Lucian Vinţan
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Abstract—This paper presents a preliminary PhD research
towards developing a framework to evaluate and optimize appli-
cation mapping algorithms for Network-on-Chip architectures.
Several such algorithms have been proposed for mapping the
threads of a parallel application on a NoC architecture. However,
the performance of those algorithms is evaluated only on some
specific NoC designs. A unified approach for evaluating such
algorithms allows a better comparison of their performance
and can potentially lead to some optimizations. The proposed
framework is intended to be flexible so that the algorithms can
be tested on different NoC designs. To this end, a scalable and
flexible Network-on-Chip simulator is proposed. Some prelimi-
nary results obtained with this simulator are presented, too. They
show the flexibility of this simulator and that it is feasible for
addressing the application mapping problem in a unified manner.

Index Terms—Network-on-Chip (NoC), parallel application
NoC mapping, evaluation, optimization, software framework,
simulation.

I. INTRODUCTION

The application mapping problem for Networks-on-Chip
(NoCs) was introduced in [1], where it was formulated as the
topological placement of the IPs onto the on-chip tiles. This
is an NP-hard problem because the search space increases
factorially with the system size. For example, a NoC with
8x8 tiles theoretically allows 64! mappings. Obviously, before
mapping each IP to a NoC tile, the application must be divided
into a graph of threads (Communication Task Graph - CTG)
and then, the threads have to be assigned and scheduled to the
available IPs.

Several algorithms [1], [2], [3], [4], [5] were proposed for
addressing the application mapping problem for NoC archi-
tectures. The purpose of such an algorithm is to determine the
best topological placement of cores onto network nodes. The
optimality of a certain mapping is given by the best trade-off
between some network performance metrics like bandwidth,
latency, energy consumption etc. A CTG provides the input
for such an algorithm because it contains the communication
patterns between the application’s threads. Based on those
patterns, the application mapping algorithm has to search for
the best possible mapping such that the performance of the
network is optimized.

The application mapping problem is tightly connected to
the routing problem [2]. While a good mapping of cores onto
network nodes can lead to energy savings, the routes used

by the cores to communicate can have a great impact on the
NoC’s performance. The “best” topological placement of the
cores onto nodes is not enough to account for the network’s
performance. When the algorithm performs the optimization
of the application mapping, the load of the network nodes and
the communication between them must also be considered. An
application mapping algorithm can find better solutions if it
takes into account the network routes as well. For example,
the network congestion can be decreased by performing multi-
path routing instead of single-path routing [3].

The existing application mapping algorithms are evaluated
on some specific Network-on-Chip architectures. For example,
frequently only 2D mesh NoC topologies are considered. Also,
not all comparisons are reported on the same NoC design.
Therefore, evaluations of such algorithms, from different re-
searches, cannot be directly compared because a common
evaluation methodology is still missing.

This paper proposes a unified approach for the application
mapping algorithms evaluation. A common framework can
also lead to optimizations of such algorithms. The envisioned
framework will also be flexible. This will allow the study of
a certain application mapping algorithm on a larger number
of NoC designs. More precisely, an evaluation of those algo-
rithms on different scalable NoC topologies is desired. In order
to achieve these aims, a scalable and flexible NoC simulator
is proposed.

Since the relevance of application mapping algorithms is
still mainly researched on a small class of NoCs (e.g.: 2D
meshes), this unified framework will contribute to determine
the most suitable mapping algorithm, for a certain applications
set and NoC design. Due to the huge design space of NoCs,
an application mapping algorithm can potentially be optimized
for a specific NoC architecture.

The rest of this paper is organized as follows. Section II
briefly presents some related work. The next section describes
the design of the framework. Section IV presents some pre-
liminary results. The last section summarizes the contributions
of this paper and outlines some directions for future work.

II. RELATED WORK

Network simulation is proposed for evaluating different kind
of parallel application mappings in [6]. A network simulator



based on SystemC [7] is used to determine the NoC’s perfor-
mance when different application mappings algorithms were
investigated. The simulator uses a 2D mesh network. Besides
the fact that this simulator only works with 2D mesh topology,
it must also be noted that no actual mapping algorithm is
used to determine the placement of IP cores onto network
nodes. Rather than this, four communication patterns are used
in order to mimic the network traffic generated by application
mappings. Unfortunately this methodology is weakly related
to the application mapping.

The application-based selection of a NoC topology is ad-
dressed in [8]. A general mapping algorithm extends NMAP
[3] so that it can be applied on other topologies too, not just
on a 2D mesh. Thus, topologies like torus, hypercube, 3-stage
clos and butterfly are also considered. A tool called SUNMAP
is designed with the purpose of automatically selecting the best
NoC topology for a given application. The general mapping
algorithm is used to produce a mapping of cores onto the
researched topologies. The tool uses multiple routing proto-
cols: dimension ordered routing, minimum-path and traffic
splitting. The best topology is selected based on floorplanning
information. Also, the following objectives are considered: the
minimization of the average packet latency, by satisfying band-
width constraints, and the minimization of power consumption,
by satisfying area constraints. SUNMAP is a complex tool
for automatically evaluating different topologies for Networks-
on-Chip, in an application-aware context. However, only a
single application mapping algorithm is considered. Taking
into account other mapping algorithms too, should provide
a more comprehensive view on the performance of different
NoC architectures.

The work done in [6], [8] represents a starting point for
building a common NoC simulation framework for evaluating
different application mapping algorithms. Like in [6], we
propose using a Network-on-Chip simulator for the evaluation
of application mapping algorithms. As it is done in [8], the
simulator allows using different NoC topologies. In contrast
with the frameworks proposed in [6], [8], our framework will
contain a NoC simulator that uses communication patterns
from applications, and that is also scalable and more flexible.
Additionally, multiple application mapping algorithms will be
implemented. This will allow a useful unified approach for
their evaluation and optimization.

III. THE FRAMEWORK DESIGN

This section describes the framework architecture, which al-
lows a unified evaluation/optimization of the NoCs application
mapping algorithms.

The proposed framework is composed of three major com-
ponents:

• A module that contains the implementation of different
application mapping algorithms;

• A network traffic generator;
• A Network-on-Chip simulator.

An application mapping algorithm determines the topological
placement of the IP cores onto NoC nodes. The representation

of this mapping process will then have to be translated
into communication messages between the network’s nodes.
This involves generating the application’s traffic pattern. The
network traffic generator has the responsibility of injecting
messages into the network such that the communication be-
tween the application’s threads is emulated. A Network-on-
Chip simulator models the behavior of the NoC based on the
generated traffic.

The purpose is to evaluate the global performance of map-
ping algorithms on different Network-on-Chip architectures.
For example, it can be evaluated how a mapping algorithm
behaves when the network topology changes.

The following subsections provide details regarding the
design of the framework.

A. Obtaining the communication patterns from applications

Application benchmarks are accurate but they do not scale
well with system size. In [9] synthetic benchmarks are con-
sidered the suitable kind of benchmarks for NoCs. The main
reason is that synthetic benchmarks scale well with the system
size while still keeping the properties of some particular fixed
size application benchmarks. A synthetic benchmark repre-
sents an abstraction for a task graph with known computation
times and communication loads. Thus, such a benchmark does
not actually contain application code but rather it tries to
capture the communicational behavior of the application.

A network simulator is not capable of executing binary code
because it is communication oriented. A complex simulator,
which simulates IP cores that execute real parallel applications
and communicate over an interconnection network, would
be better suited. However, while currently there are scalable
network simulators, multicore simulators do not provide the
same scalability (they can usually run no more than tens of
cores).

In [10] it is shown why it is difficult to capture the com-
munication patterns of real applications. The authors propose
a reactive network traffic generator. The traffic generator has
to be reactive because the network latency can vary from one
NoC architecture to another. If only the timestamps of the
communication would get collected, whenever a message is
delayed (due to network congestion for example), this delay
should propagate to subsequent messages as well.

Usually, an application mapping algorithm needs to have the
application described by a Communication Task Graph (CTG)
[1]. The CTG keeps the data regarding the communication
that occurs between the network nodes. To simplify the
implementation model, it is not considered what kind of data is
communicated, but rather the volume of communication. This
information can be used to determine the amount of traffic
which must be generated between any two network nodes.

CTGs can be automatically generated with the TGFF tool
[11]. The embedded systems synthesis benchmarks suite [12],
based on the EEMBC [13], contains task graphs for five ap-
plication suites: automotive/industrial, consumer, networking,
office automation and telecommunications. There is a version



of each task graph for three kinds of systems: distributed,
wireless client-server and system-on-chip.

The application mapping algorithm uses the information
provided by the CTG to determine the best mapping: commu-
nication volume, execution time, power consumption. Map-
ping constraints like bandwidth can be specified manually.

B. Modeling the Processing Element (PE) as a Finite State
Machine (FSM)

In [9] it is considered that the communication model is
enough for the communication architecture’s evaluation. The
details of the computations performed are not necessary and
thus, Finite State Machines that emulate the communication
between the tasks of the real applications are proposed.

Each Processing Element (PE) from the NoC is modeled
as a Finite State Machine (FSM). The FSM is generated
automatically from the CTG and mapping, and it contains the
following information:

• Task list: what tasks are mapped to the PE (this says to
what PEs data can be sent and from what PEs data can
be received);

• Control information: the data dependencies (e.g.: a
communication with a certain PE will be initiated only
after enough data was received from another PE);

• Processing time (P): how much time a PE requires for
executing a task. When enough data was received, the
PE will execute P operations (i.e. will wait for a certain
amount of time) before generating a response;

• Transaction data amount (D): the size of the commu-
nication, which will be generated after processing.

The following figure describes the FSM associated to a PE.

Fig. 1. The FSM associated to a PE

The PE that contains the root task of the CTG starts injecting
packets into the network with a frequency specified by the
CTG. While the PE with the root task is initially in the
processing state (2) of the FSM, the rest of the PEs are in the
waiting state (1). The PEs enter in the processing state after
all required data are received. The duration of the processing
is given by the task type and by the processing element type,
too. After the processing is done, any PE enters in state 3. In
this state, the generated data is sent to the required PEs. After
all the generated data has been sent, the PE reenters in the
waiting state.

The presented framework models the Processing Elements
from the NoC as Finite State Machines, automatically gener-
ated based on the information from the CTG.

C. The ns-3 NoC simulator
A flexible Network-on-Chip simulator, called ns-3 NoC, was

developed for the framework presented in this paper. It is based
on the ns-3 network simulator [14], which is an event-driven
simulator for Internet systems. ns-3 NoC provides a framework
for researching different NoC designs. This simulator aims
to provide a good trade-off between simulation accuracy and
speedup, by making use of ns-3, which is one of the fastest and
most memory efficient network simulators currently available
[15]. Scalability is another important characteristic of ns-3,
which is inherited by ns-3 NoC. This simulator allows the
user to customize the packet size, packet injection rate, buffer
size, network size, switching mechanism, routing protocol,
network topology and traffic patterns. It can evaluate the NoC
architecture in terms of network latency and throughput.

1) The ns-3 NoC architecture: The design of the ns-3 NoC
simulator is derived from the design of ns-3. There is a set of
fundamental components (objects) which are used by ns-3:

• Node: the representation of a network entity such as a
personal computer, a router, etc. A Node can aggregate
other components as protocol stacks and therefore, it has
the capability to process packets;

• Application: a packet generator and consumer which can
run on a Node and interact with a set of network stacks;

• Topology: represents the network’s topology and it is
composed of two elements:

– NetDevice: the Network Interface (the link between
a Node and a Channel);

– Channel: the medium used to communicate and
interconnect NetDevice objects.

Fig. 2. The basic architecture of ns-3 NoC

The ns-3 NoC simulator was designed by implementing
these components. The basic architecture of the ns-3 NoC



simulator is illustrated in Figure 2, which presents the major
components of a network node.

The components of the ns-3 NoC simulator are the NoC
application, node, router, net device, and channel. They are
presented during the next paragraphs.

a) NoC application: The NocApplication models an ns-
3 application. It represents the Processing Element of a Net-
work on Chip, being responsible with injecting packets into the
network and with receiving packets from the network. Packets
are injected into the network with a frequency specified by
the parameter called data rate. The data rate is expressed
in bits per second, and, based on the user configurable size
of packets, the packet injection frequency is determined. An
ns-3 application runs for a given amount of time. Therefore,
packets are injected into the network, until the running time
of the application ends. Additionally, the user may specify a
maximum amount of bits that an application can inject into
the network. This kind of ns-3 application allows for packets
to be injected into the network asynchronously. However, the
simulator also models a synchronous ns-3 application (like in
[16]). The synchronous ns-3 application allows packets to be
injected into the network with a certain injection probability.
This application can inject one packet per clock cycle. Each
network router can route one packet per network cycle. Packets
are injected for a certain number of cycles (specified by the
user).

The NocApplication uses the following traffic patterns for
determining the destination node of the injected packets: bit-
complement, bit-reverse, matrix-transpose, uniform random.
They are representing a set of communication patterns which
consider the permutations that are usually performed in paral-
lel numerical algorithms [17].

b) NoC node: The NocNode models the network node. It
allows ns-3 applications to connect to it, and it also aggregates
a router.

c) NoC router: The NocRouter has the responsibility to
route the packets through the network. It uses a switching
mechanism for deciding when packets are forwarded, and
a routing protocol which determines the next network node
where the packet will go.

The NocSwitchingProtocol represents a common specifi-
cation for all the switching techniques.

NocRoutingProtocol is an interface for all of the simu-
lator’s routing protocols. An abstraction called NocRouter
specifies a generic router for the simulator. This abstraction
allows any concrete implementation of a router to make use
of the network’s load. However, this is not mandatory: a
router is able to work with or without network load. The
LoadRouterComponent is an interface that requires its im-
plementations to specify how a router is supposed to compute
its local load, and also what load value must be propagated
to the neighboring node (from a certain direction). Note that
the load values’ computation is the responsibility of the router,
whereas a routing protocol that uses load information only uses
the load values to perform route evaluations. The advantage
of such decoupling is that any routing protocol can make use

of the load information, as it is computed by a certain load
router component.

d) NoC net device: A NocNetDevice represents a net-
work interface. It connects a network node to a network
channel, and it is responsible with sending and receiving
packets to and from adjacent nodes. The router has direct
access to the net devices. Based on what routing path is
established, a certain net device will be chosen for sending a
packet. The packet will travel through the channel associated
to the selected net device and it will arrive at the neighboring
node via the corresponding net device. Each net device has
one input queue, which allows for input channel buffering.
Each net device continuously monitors its input queue and as
long as packets are available, it requires the router to provide a
route for the packet from the head of the queue. The switching
mechanism will first have to decide when the packet can be
routed. After the packet is ready to be sent, if the respective
channel is available, the transmission will begin.

e) NoC channel: The NocChannel implements a bidi-
rectional communication channel used for the network. It is
characterized by two parameters: data rate and delay. The data
rate is practically the bandwidth of the channel. The delay
parameter can be used to specify how much time takes for a
data transmission through the channel.

2) Network topologies: The ns-3 NoC simulator currently
works with a 2D mesh topology. Additionally, the network
topology from the Irvine architecture [18] is implemented as
well. This topology is a variation of a 2D mesh topology. It
has two channels for each two nodes vertically interconnected.

3) Network routers and routing protocols: For the Irvine
topology the router consists of: an internal router, a right
router and a left router. The internal router is only used as
an interface to the processing element. The right router is
capable of routing packets horizontally only from West to
East, while the left router can route horizontally from East
to West. For the North and South directions, both left and
right routers have their own channels. The Irvine router uses
a Dimension Order Routing protocol. This routing protocol is
also used for a generic router implemented for the 2D mesh
topology. Both XY and YX routing mechanisms are available.
Additionally, the routing protocols Static-Load-Bound (SLB)
and Self-Optimized (SO) [16] were implemented as well.
These two routing protocols use information about the network
load, being therefore adaptive.

4) Switching mechanisms: The ns-3 NoC simulator cur-
rently works with the packet-switching policy. This is more
common than circuit-switching is, as it is used in about 80%
of the current NoC research [19]. In order to have a flexible
NoC simulator, three of the most used switching techniques
were implemented: Store-and-Forward, Virtual Cut-Through
and Wormhole.

5) The packet format: A packet contains one head flit. The
head flit keeps the header of the packet. The payload data is
kept in data flits. The size of the packet is parameterizable.

The format of the packet header is based on the one used
in [18]. Compared to the header format from [18], the header



used by ns-3 NoC for 2D mesh topologies uses 32 bits to
encode the X and Y coordinates of the network nodes. This
allows for a scalable 2D mesh network topology. The fields
subdataId and peGroupAddress are not currently used but, they
were kept for further developments. The field load was added
to the header. It occupies 8 bits, and it is used at propagating
the information about the network load (the SLB and SO
routing protocols are using this field).

IV. PRELIMINARY RESULTS

This section presents some preliminary results obtained
with the developed ns-3 NoC simulator. The purpose is to
illustrate the flexibility of the implemented simulator, which is
important for the unified framework that evaluates application
mapping algorithms.

The first simulations evaluate the Irvine architecture. As
already mentioned, this architecture uses a variation of the 2D
mesh topology. Supporting different topologies is a goal for the
framework. The main characteristic of the Irvine architecture
is that compared to head flits, a faster clock can be used to
advance data flits. A data flit follows the route determined
for the head flit of the packet it belongs to. The conven-
tional wormhole switching mechanism uses the same clock
to advance head and data flits. The advantage of the Irvine
architecture is given by a reduction of the average latency of a
packet. The results from Figures 3 show a significant decrease
of the average packet latency as data flits are advanced through
the network using a clock frequency which is two or four
times higher than the clock frequency used for advancing the
head flits. Compared with the original wormhole switching
approach (i.e. the data flits advance at the same speed like
head flits do), when the data flits advance twice or four times
faster, the average packet latency is significantly lower. The
simulations were run on multiple traffic patterns, for 10000
clock cycles, with 1000 warm-up cycles. At each cycle, a flit
can be injected in any node of the network, with a certain
injection probability. XY routing with wormhole switching
has been used. The packets contain 9 flits, and the size of
the input channel buffers was 8 flits. The size of the network
was set to 8x8. With the matrix-transpose traffic pattern and
using a 4 times higher clock frequency for the data flits, the
packet’s average latency remains close to the zero-load latency,
as long as the injection probability is lower or equal than
0.9. The Irvine architecture helps at decreasing the network
congestion. This is also visible for the other three traffic
patterns. The network is significantly less congested when
data flits are transmitted faster than head flits. For the bit-
complement traffic pattern, the average packet latency is fairly
higher because each node injects packets. This is not true with
the other traffic patterns because they can create traffic from
a certain node to exactly the same node, which is not injected
into the network. Therefore, we believe that this behavior
might contribute to the bit-complement’s higher packet latency.

The second simulation results presented in this paper show
how the ns-3 NoC simulator can be used at evaluating the
impact of the available buffering resources. As shown in Figure

4, the more buffering resources are available, the better the
performance of the NoC architecture gets. As expected, the
size of the input channel buffers becomes more important as
the number of packets injected into the network increases. The
simulations were run using the uniform random traffic pattern,
for 10000 clock cycles, with 1000 warm-up cycles. At each
cycle, a flit can be injected in any node of the network, with
a certain probability of injection. XY routing with wormhole
switching has been used on a 4x4 Irvine NoC architecture. No
speedup has been used for the data flits. Each packet has 9
flits, and the size of the input channels was varied uniformly,
from 2 up to 8 flits.

These preliminary results show how differently the perfor-
mance of the network varies based on the traffic pattern used
and some NoC parameters, too (like the amount of buffering
resources, faster data clock, etc.). The performance of a NoC
architecture is directly influenced by the application mapping
algorithm. By comparing the results of different mapping
algorithms, it can be determined which algorithm is most
suited for mapping a specific application on a certain NoC
design.
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V. CONCLUSIONS AND FURTHER WORK

This paper presents an initial PhD research towards develop-
ing a unified framework for the evaluation and optimization of
application mapping algorithms for Network-on-Chip architec-
tures. The major problems that must be addressed are outlined.
A scalable and flexible ns-3 NoC simulator was developed as
the backbone of the framework. Some preliminary simulation
results show the current capabilities of this simulator.

Future work involves the implementation of several known
application mapping algorithms. Also a network traffic gen-
erator, capable of injecting packets into the network based
on Communication Task Graphs, will be developed. The ns-
3 NoC simulator will also be extended so that it will allow
other network topologies too, not just 2D mesh and variations
of this one.
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