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Abstract: Network-on-Chip (NoC) application mapping is an NP-hard problem, which can be
addressed with heuristic algorithms. This paper presents an Optimized Simulated Annealing
(OSA) algorithm that deals with the topological placement of cores onto NoC nodes. The
algorithm is derived from a general energy- and performance-aware Simulated Annealing and
employs and adapts some of the best Simulated Annealing practices from the field of task
scheduling. OSA uses an application- and network-based exploration of the search space. The
cores are implicitly and dynamically clustered using knowledge about communication demands.
We show that OSA is a more feasible Simulated Annealing approach to NoC application
mapping by comparing it with a general Simulated Annealing algorithm and a Branch and
Bound algorithm, too. Our simulations use real applications and show OSA to be more than
98% faster than a general Simulated Annealing, without giving worse solutions. Also, compared
to a Branch and Bound technique, it gives better solutions, as the problem size increases, while
in terms of speed and memory consumption the two algorithms are comparable.
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1. INTRODUCTION

Simulated Annealing (SA) is a stochastic heuristic search
technique introduced by Kirkpatrick et al. (1983) as a
generalization of the Metropolis method, which simulates
a system of particles that suffers changes in temperature.
Kirkpatrick et al. used Simulated Annealing to attack
a classical NP-hard optimization problem, the traveling
salesman problem, and they also applied SA to NP-hard
computer design problems like partitioning, component
placement and wiring of electronic systems.

The advantages of Simulated Annealing are its ease of
implementation, its applicability for many combinatorial
optimization problems and the ability to give reasonably
good solutions. However, the parameters of the algorithm
must be carefully chosen, since SA can easily run for a
very long time until it gives a suitable solution. Because
Simulated Annealing is a very general algorithm, several
generic and problem-specific choices have to be made in
order to implement it for a particular problem Fouskakis
and Draper (2007).

Simulated Annealing is used in the field of Network-on-
Chip (NoC) application mapping. The NoC application
mapping problem is the topological placement of the
Intellectual Property (IP) cores onto the on-chip tiles
Hu and Marculescu (2003). This is an NP-hard problem
because the number of possible mappings is ,, P, = (n’_Li'k),
Therefore, heuristic algorithms are proposed to solve this
problem.

We propose an Optimized Simulated Annealing (OSA)
technique for the NoC application mapping problem. We
begin by presenting some related work. After we describe
OSA, we briefly present our simulation methodology. Next,
we present OSA’s performance in terms of speed, memory
consumption and solution quality, by comparing it with
a general Simulated Annealing and a Branch and Bound
(BB) algorithm. Finally, we present our conclusions and
directions for future work.

2. RELATED WORK

Simulated Annealing was one of the first algorithms used
to address the NoC application mapping problem Hu
and Marculescu (2003). Using a simple energy analytical
model, the authors proposed an energy-aware mapping for
square, N X N, 2D mesh NoCs, with XY routing and worm-
hole switching. Two algorithms were used to heuristically
solve the problem: Simulated Annealing and Branch and
Bound. Both of them are bandwidth constrained and try
to find the best solution by minimizing the communication
energy. Hu and Marculescu showed that SA is capable
of finding better mappings than the ones found using
Branch and Bound. SA’s main disadvantage is speed: the
simulation results from Hu and Marculescu (2003) show
that BB is tens of times faster than SA. For a 10x10
NoC, SA did not finish its execution in 40 hours. Both
SA and BB algorithms were further developed in Hu and
Marculescu (2005), where the mapping problem is treated
in conjunction with the routing problem.

Little research has been done to optimize Simulated An-
nealing for mapping cores onto NoC tiles. A Cluster-based



Simulated Annealing (CSA) was proposed by Lu et al.
(2008). CSA tries to exploit the application’s communica-
tion locality so that it can identify clusters of IP cores.
Firstly, the NoC is clustered: the nodes are grouped based
on the distance between them and their connectivity. Sec-
ondly, cores are clustered based on communication. A core
cluster is then associated with each NoC node cluster. At
high temperatures, the annealing process occurs normally:
any cores may be moved. However, when the temperature
decreases enough, the annealing process is limited to the
cores from clusters. The clustering technique is static and
it is driven first by the NoC topology and second by
the application. Clustering represents a problem-specific
choice for Simulated Annealing. It improves SA’s speed
because it uses more knowledge about the NoC application
mapping problem than a general Simulated Annealing.

We propose next an Optimized Simulated Annealing al-
gorithm for NoC application mapping. As compared to
CSA, our algorithm performs an implicit clustering, during
the annealing process. As we will show next, it is also
significantly faster than both SA and CSA because OSA’s
search space exploration is application and network de-
pendent. We do not cluster the NoC nodes because we do
not want to restrict the core clustering process. Therefore,
we apply clustering only for the application, and we do
not explicitly cluster the IP cores. We rather influence the
moves during the annealing process, so that the IP cores
that communicate with each other clump together.

3. OPTIMIZED SIMULATED ANNEALING

Optimized Simulated Annealing was evolutionary created
by continuing the work of Hu and Marculescu. Their Sim-
ulated Annealing and Branch and Bound algorithms are
available through the NoCmap project SLD (2010). We
ported their two algorithms into our UNIfied framework
for optimization and evaluation of NoC application MAP-
ping algorithms (UniMap) Radu (2010). UniMap’s goal
is to allow the evaluation and potential optimization of
different application mapping algorithms for NoCs, under
a common frame Radu and Vingan (2010). OSA is a
Simulated Annealing approach that is optimized for the
Network-on-Chip application mapping problem, by apply-
ing and adapting some of the best practices for Simulated
Annealing used in task mapping problems Orsila et al.
(2008).

The pseudocode for the Optimized Simulated Annealing
is presented in Algorithm 1. It is derived from the general
Simulated Annealing proposed by Orsila et al. (2008).

We start by describing how OSA implements the key
issues of a typical SA algorithm. Then, we conclude by
summarizing our Optimized Simulated Annealing.

3.1 Mapping cost

The mappings produced with OSA are evaluated in terms
of energy consumption, using the simple analytical model
from Hu and Marculescu (2003).

3.2 Annealing schedule

We have chosen for OSA the geometric annealing schedule
because this is the most used and recommended one

Algorithm 1 Optimized Simulated Annealing (OSA)
Require: M; #0
Ensure: T; > 1
C < BitEnergyCost(M;)
Mpest = M
Cbest =C
Ty =0.001
R=0
for i =0 to co do
if i % L =0 then
R=0
end if _
T=1;-09l%]
My = PDFbasedSwapping(M,T)
Chew = BitEnergyCost(Mpew)
AC = Cnew -
if AC <0 or NormInvEzpAccept(AC,T) then
if Crew < Chest then
Mpest = M,

new

Cbest = Cnew

R=0
else
R=R+1
end if
M = Mew
C= Cnew
else
R=R+1
end if
if ' <7y and R = L then
break
end if
end for
return M.

Fouskakis and Draper (2007) and because the general
SA implementations use it too. The geometric annealing
temperature schedule defines the temperature at iteration
1as: T = TOqL%J. To is the initial temperature and L is
the number of iterations per temperature level. We set ¢,
the geometric progression ratio, to 0.9, because this value
is also used in Kirkpatrick et al. (1983) and SLD (2010).

OSA uses an initial temperature set to 1 by default but,
this is considered a parameter of the algorithm. The final
temperature is fixed to 0.001. Hu and Marculescu’s SA
starts from a temperature of 100 and the final temperature
is not bounded (a different stop criteria is implemented).

8.8 Number of iterations per temperature level

The general Simulated Annealing sets L = 100(N x N)?2,
where N x N represents the size of the 2D mesh. For
example, for a 4x4 2D mesh, SA tries L = 25600 mappings,
at each temperature level. These mappings are randomly
generated, from the current mapping, by interchanging two
cores, or by placing a core into an empty NoC node. If we
consider SA runs for 100 temperature levels, this leads
to 2560000 mappings generated. An Intel Xeon processor
from our HPC system ULBS (2010) evaluates a mapping in
0.04 ms. Thus, for this example, SA would run for about
102 seconds. On a 10x10 mesh, SA would require more



than one hour running time. However, the general SA
algorithm is not bounded by the number of temperature
levels, and we observed that it easily runs for more than
150 levels of temperature for a 4x4 2D mesh. We argue that
this number of iterations per temperature level is very high
and it has a deep impact on SA’s speed. Also, we observe
that this number is only NoC aware. It is by no means
application aware. For example, mapping 15 or 16 cores
on a 4x4 2D mesh uses the same L.

Considering the above simple observations, we use in OSA
the following relation to compute the number of iterations
for each temperature level:

c(2n—c—1)

5 ,e,n €Nyn > ¢ (1)

LOSA = nC2 - n—cC2 =
n is the number of NoC nodes and ¢ is the number of cores
to be mapped.

This number of iterations per temperature level represents
how many distinct core swappings are possible for a given
NoC with n nodes and ¢ cores, so that at most two cores
change positions in comparison with the initial mapping.

It may easily be observed that:

1) not.

nin —
( ="LOSAnan (2)

maX{LOSA} = 9

This happens when the number of cores to be mapped is

equal with the number of NoC nodes.

Recall that SA has L = 100(IN x N)2. Because we noted
the number of NoC nodes with n, we can write that

Lgya = 100n2. Tt is obvious that Losa < LOSAmaz < Lga.
Also,
O(Losa)=0(n?) O(Losa)
O(Lan)=1000(n2y| = 1 = O(Lsa) 99% (3)

This is in perfect concordance with our further quantita-
tive results.

Losa counts all mappings that are obtained by making
a single modification (core swapping) to the given map-
ping (otherwise, the total possible mappings are of course
nPr > Losa). All the mappings that derive from a given
mapping in this way, are what we call the mapping’s imme-
diate neighborhood. We can make an analogy with Markov
chains. OSA’s number of iterations per temperature level
can be associated with the number of possible single step
transitions from a Markov chain, which describes the map-
ping state space exploration performed by OSA. Later
on, we will show how OSA assigns probabilities for each
single step transition, using the concept of Probability
Distribution Function (PDF). One may also observe that
OSA’s number of iterations per temperature level is both
NoC and application aware: n is NoC topology character-
istic and c is application characteristic. Returning to the
example with the 4x4 2D mesh, we compute Loga, for
mapping 16 cores, to be 120. This means a run time of
0.48 seconds. Compared with how much time the general
SA needs (102 seconds), we get a speedup of 99.53%. For
the 10x10 2D mesh, Losa = 4950. This means a runtime
of 19.8 seconds and a speedup of 99.5%.

Some criticism of this approach might be that, although
huge speedup can be obtained with Loga, OSA might

find worse solutions because it does less exploration of the
search space. We argue that the general SA can easily
repeat a lot of moves without finding better solutions.
Additionally, OSA considers the initial temperature a
parameter, which can be increased so that the algorithm
does more exploration. We will sustain our assessments
through simulations.

8.4 Acceptance function

Both general SA and CSA algorithms use the Metropolis
acceptance probability function: P(AC) = e~ %7. OSA
however uses the normalized inverse exponential accep-
tance function because it is shown in Orsila et al. (2008)
that it yields better results when it is used for task schedul-
ing. This function is defined as:

P(AC) = — (4)

14+¢e ©oT

The practical difference between the two functions is that
the exponential form always accepts a new mapping that
is equally good compared to the current mapping, whereas
the (normalized) inverse exponential form accepts such a
new mapping with a 50% probability.

OSA’s acceptance function performs cost normalization by
dividing the cost variance (AC') with the initial mapping
cost (Cp). This allows the temperature T' to be indepen-
dent of the cost function: T € (0, 1]. Note that OSA sets
the initial temperature to 1 and the final temperature to
0.001 but, it allows that T; > 1. Regarding the normalized
inverse exponential function, this would mean the initial
cost is artificially increased.

Knowing OSA’s final temperature and acceptance func-
tion, we can calculate that OSA considers the system
frozen when the energy consumption varies with less than
0.5%.

3.5 PDF-based swapping

The SA algorithms mentioned in our related work use
random core swapping: a core is selected randomly and
this core is then swapped with another randomly selected
core (an empty node can also be used). OSA does not
use a uniformly random probability when determining
the core to be moved. Instead, it adapts the variable
grain single move (based on probability densities and used
for task mapping Orsila et al. (2008)) into a variable
grain swapping move, which uses two Probability Density
Functions. OSA builds a PDF for each core, based on
the amount of data communicated by it. This leads to
better chances for selecting a core that communicates
more data, than a core which communicates less data.
As the annealing temperature decreases, the probabilities
uniformly equalize. Therefore, at low temperatures, all
cores have an equal chance to get selected for swapping.
Through this approach, OSA uses problem knowledge
(dynamic characteristics) to explore the search space.

. 1 T (coreToComm; 1
P[SelectedCore = Z] = E + ? (m — C) (5)
e ¢ is the number of cores to be mapped;
e T and T; are the current and initial temperatures;



o coreToComm; is the amount of data communicated
by core i;

o totalToComm is the total data communicated by all
cores.

The second core used for swapping is selected by account-
ing for the communication volumes between the core to be
swapped and the rest of the cores. Each core gets such a
PDF associated before the annealing starts.
COMMy; 5
Plei & ¢j] = totalComm (6)
e comm,; is the communication volume between cores
i and j (this value is positive if core ¢ sends data to
core j, or core j sends data to core i; otherwise, it is
zero);
e totalComm is the data amount communicated by the
entire application.

According to the PDF described above, the second core
is selected. Then, OSA searches, in a uniformly random
way, for a direct neighbor of the second selected core. This
one will be swapped with the first core. This kind of move
tries to make communicating cores to attract each other,
to cluster themselves, in a natural manner.

Compared to CSA, our algorithm clusters the cores dy-
namically, during the annealing phase. OSA does not work
with predetermined clusters, and it also does not cluster
the NoC nodes. Network-on-Chip node clustering is not
needed because OSA looks in the NoC node’s neighbor-
hood.

We call this kind of move a PDF-based swapping move. At
every temperature level, OSA performs exactly L PDF-
based swappings.

3.6 Stopping condition

OSA uses the stopping function recommended by Orsila
et al. (2008) and called coupled temperature and rejection
threshold. The annealing process stops when the temper-
ature reaches or goes below the final temperature and the
last L tried mappings did not lead to a solution better than
the best solution found so far. Therefore, OSA runs for a
determined number of annealing temperatures, which can
be exceeded while better solutions are found.

Because OSA’s stopping condition determines a number of
annealing levels independent of the problem size, the run-
time of our algorithm is quasi-constant when the algorithm
is run more than once, in exactly the same conditions. This
property does not apply to Hu and Marculescu’s Simulated
Annealing.

3.7 Summary

OSA starts from an initial mapping, M;, randomly gen-
erated. Another input parameter can be the initial tem-
perature, T;, which is set by default to 1. A bit energy
model is used by OSA to evaluate the mappings. We use a
standard geometric annealing schedule, with Log4 anneal-
ing iterations per temperature level. The move function
is an adequate swapping based on Probability Density
Functions. A normalized inverse exponential function de-
termines when worse mappings are accepted. OSA stops

when the final temperature (T = 0.001) is reached and the
number of consecutive rejected moves, R, reaches L. While
in Orsila et al. (2008) R counts how many moves were
rejected since the last accepted move, in OSA we use R
to count how many moves were rejected, per temperature
level, since the last current best mapping found. This
means that irrespective of the final temperature, OSA
keeps running while it still finds better mappings. The
Simulated Annealing from Orsila et al. (2008) needs to
wait until the number of unaccepted moves, counted from
the last one accepted, reaches L. OSA’s stopping condition
is therefore more coupled to T'. This makes OSA’s number
of iterations to be independent of the NoC topology and
tiles number. Since we consider the energy variations are
small enough when the final temperature is reached, we
believe our way of computing R is more suitable for a
Simulated Annealing applied to NoC application mapping.

Compared to the general SA, our algorithm determines the
number of iterations per temperature level by computing
the neighborhood size of the current mapping. Also, OSA
moves from one mapping to another using an implicit clus-
tering technique, based on Probability Density Functions.
This kind of clustering is implicit and dynamic, whereas
CSA'’s clustering approach is explicit and static.

Currently, OSA works only with 2D mesh topologies but,
it can be adapted to work with other NoC topologies,
too. Like Hu and Marculescu’s SA, OSA is also capable to
generate the routing functions, in a deadlock- and livelock-
free manner, and to check if the obtained mapping meets
the bandwidth constraints.

4. SIMULATION METHODOLOGY

Network-on-Chip benchmarking is still an open problem.
The Open Core Protocol International Partnership (OCP-
IP) currently works with some of the most prestigious
NoC research groups from the world to build a suitable
benchmarking methodology for Network-on-Chip simula-
tion Salminen et al. (2010).

We use in this research the E3S benchmark suite Dick
(1998). It includes Communication Task Graphs (CTGs)
Marculescu et al. (2009) for five classes of real applications:
automotive, consumer, networking, office and telecommu-
nications. Because each application has only a few cores,
we combined all Application Characterization Graphs
(APCGs) Marculescu et al. (2009) from each application
domain and considered them to form a single system of
several similar applications that need to be mapped on
the same Network-on-Chip.

Additionally, we work with some of the most used APCGs
found in literature: Multimedia System - MMS (CTG
0) Hu and Marculescu (2005), MMS (CTG 1) Hu and
Marculescu (2003), Video Object Plane Decoder - VOPD
(CTG 0) Murali and Micheli (2004a) and several core
graphs from SUNMAP Murali and Micheli (2004b): Pic-
ture in Picture (PIP), MPEG4, Multi-Window Display
(MWD) and VOPD (CTG 1). We also introduce the H.264
decoder, with the tasks obtained through data partitioning
- H264 (CTG 0) and through functional partitioning -
H.264 (CTG 1) van der Tol (2003), by manually creating
the APCG from the CTG.



We consider the most common Network-on-Chip archi-
tecture: a 2D mesh with regular tiles, using wormhole
switching and XY routing. The NoC topology size is a
simulation parameter. The NoC link bandwidth was set
sufficiently high so that bandwidth constraints are always
met. The energy required to transfer a bit of data was
taken from NoCmap.

Table 1 summarizes the benchmarks used in this research.
It also presents the NoC 2D mesh size used for mapping
each benchmark.

Table 1. Benchmarks

Benchmark # cores  # NoC nodes NoC size
auto-indust 24 25 5X%X5
consumer 12 12 4x3
networking 13 16 4x4
office-automation 5 6 3x2
telecom 30 30 6 X5
PIP 8 9 3x3
MPEG4 12 12 4 x 3
MWD 12 12 4 x 3
H.264 (CTG-0) 14 16 4x4
H.264 (CTG-1) 16 16 4 x4
VOPD (CTG-0) 16 16 4x4
VOPD (CTG-1) 12 12 4x3
MMS (CTG-0) 16 16 4x4
MMS (CTG-1) 25 25 5x5

In order to increase the simulations’ accuracy we mapped
each application 1000 times, with each algorithm (SA,
OSA and BB). For each simulation, the initial mapping
was randomly chosen. To make the comparisons fair, we
set the seed of the random number generator, so that all
algorithms start from the same search space point, every
simulation.

For each mapping, we recorded the mapping, its cost (in
pJoule), the runtime of the algorithm (user CPU time) and
the average heap memory consumption.

5. RESULTS

In this section, we evaluate our Optimized Simulated
Annealing by comparing it with the two algorithms from
NoCmap: Simulated Annealing and Branch and Bound.

5.1 Runtime

Figures 1 and 2 present a runtime comparison between
OSA and SA and respectively, OSA and BB. The speedups
are obtained as an average of the 1000 runtime speedups,
per benchmark.

Figure 1 shows that OSA is much faster than Hu and
Marculescu’s Simulated Annealing. We obtained an av-
erage speedup of 98.95%. This result is corelated with
our expectations derived from the comparison between
Lss and Logsa. The “lowest” speedups are on office-
automation and PIP, the benchmarks with the smallest
number of IP cores. We justify this significant speed gain
mainly by the way OSA computes the number of iterations
per temperature level.

It can be seen in Figure 2 that OSA is slower than BB
by 24%, on average. However, for half of the benchmarks,
OSA is faster. Compared to Branch and Bound, our
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algorithm obtained poor runtimes on MPEG4 (more than
twice slower), H.264 (1.5 times slower in both cases) and
lower but comparable runtimes for PIP, office-automation,
VOPD (CTG 1) and auto-indust. We also observe OSA
was faster on the biggest benchmarks: 25% speedup for
MMS (25 cores) and 41% speedup for telecom (30 cores).

5.2 Memory

Next, we see how OSA’s memory consumption is, com-
pared to the memory consumed by Simulated Annealing
and Branch and Bound.
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Simulated Annealing consumes less memory than OSA
(see Figure 3), when mapping the benchmarks with more
than 16 cores. OSA manages to beat SA on several
benchmarks with 16 cores but, on average, Simulated
Annealing consumes with 13% less memory than our
Optimized Simulated Annealing.

However, compared to Branch and Bound, OSA takes
a little bit less memory on average. Actually, Figure 4
points out the tendency of Branch and Bound to grow
its memory requirements as the problem size gets higher:
OSA consumes with more than 33% less heap memory
than BB, on telecom.

5.8 Solution quality

This section presents the quality of the solutions found by
the three algorithms.

Figure 5 compares the mappings found by SA and OSA.
For each benchmark, we evaluate the 1000 mappings re-
turned by the two algorithms and count how many times
one algorithm returned better mappings than the other
one (marked with “<” in the chart’s legend). Cases when
both algorithms returned mappings with exactly the same
cost are marked distinctively. We notice that both algo-
rithms find the same “best solution”, after all 1000 runs,
for benchmarks: networking, office-automation and PIP.
For the last two of these three benchmarks, we confirm
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the solution is optimal because we applied an Exhaustive
Search. Overall, OSA finds worse solutions than SA for 6
of the 14 benchmarks used in our simulations.

We also compared only the best solutions found by each
algorithm. We find out that SA and OSA always find
the same best solution. However, Branch and Bound fails
to obtain the best mapping found by SA and OSA in
two cases: for MMS (CTG 1), the energy lost with BB’s
mapping is 0.1% and for auto-indust the energy loss is
around 6%.

Figure 6 shows how many times the best solution, given
by all three algorithms, was found by each one of them.
OSA finds the best solution more often than SA for several
benchmarks: auto-indust, telecom, MPEG4, H.264 (CTG
0), VOPD (CTG 1). BB outmatches OSA for the MMS
benchmarks, VOPD (CTG 0), H.264 (CTG 1), MWD and
consumer. Another observation is related to BB: it finds
the best solution with probability 1 for all benchmarks,
except auto-indust and MMS (CTG 1). We also observe
that, on average, OSA finds the best solution a bit more
frequently than SA.

We also averaged the quality of the 1000 mappings per
benchmark. Branch and Bound is the algorithm that, on
average, gives the mapping with the smallest energy con-
sumption. It fails just on auto-indust benchmark, where
OSA provides the best average mapping cost. Optimized
Simulated Annealing achieves for MMS (CTG 1) a far
better average cost compared to Simulated Annealing:
more than 34% energy gain is obtained. For the rest of
the benchmarks, the differences between OSA and SA are
less than one percent. Compared to BB, OSA provides
solutions that are worse with no more than 2.5% on each
benchmark, except auto-indust, where OSA is better with
more than 6% than Branch and Bound.

Using 1000 simulations per benchmark, we have previously
shown that the percentage of better solutions was lower for
OSA than for SA on six benchmarks: MPEG-4, MWD,
H.264 (CTG-0), MMS (both CTGs) and consumer. In
order to get OSA’s percentage of better solutions over
SA’s percentage, we reran OSA over the mentioned bench-
marks, with an increased initial temperature. Raising the
initial temperature allows OSA to evaluate more map-
pings. Also, the higher the temperature is, the bigger is
the probability to accept “bad” moves during the anneal-
ing process. Table 2 shows what initial temperature was
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needed to achieve our goal and what was the speedup
obtained with this increased initial temperature. Note that
we raised exponentially OSA’s initial temperature due to
OSA’s geometric annealing schedule. By increasing the
initial temperature, we managed to make OSA better than
SA on all six benchmarks, except one. For MMS (CTG
1), we were only able to reduce the difference between
SA and OSA to half. Still, for MMS (CTG 1), OSA gives
significantly better solutions on average.

Table 2. OSA initial temperature and speedup

over SA
Benchmark Speedup (%)  Initial temperature
MPEG4 97.51 lelO
MWD 96.76 lelO
H.264 (CTG-0) 99.18 le2
MMS (CTG-0) 97.41 lel?
consumer 98.91 2

5.4 The importance of clustering

In order to illustrate how important OSA’s clustering tech-
nique is, we present next a comparison between OSA with
and without clustering. The single thing that distinguishes
OSA without clustering from OSA (with clustering) is
that, in the first case, the simple random core swapping is
used, without any restrictions.

Figure 7 shows how frequently the best solution is found.
For all benchmarks, OSA with clustering finds the best
solution more frequently than OSA without clustering.
More that this, we observe significant differences for the
benchmarks mapped onto the 4x4, 5x5 and 6x5 2D mesh
NoCs. It is important to mention that the two OSA
variants find the same best solution for all benchmarks,
except MMS (CTG 1), where the best mapping found by
OSA w/o clustering is 0.02% worse. On average, the best
solution percentage for OSA with clustering is 18% higher
than for OSA without clustering.

Figure 8 shows how much energy is consumed, on aver-
age, by OSA without clustering (compared to OSA with
clustering). It may be noticed that, for all benchmarks,
OSA without clustering generates mappings that deter-
mine additional energy consumption. The clustering tech-
nique leads to a lower energy consumption with more
than 1% in some cases. OSA with clustering always gives
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Fig. 8. Additional energy consumed by the mappings
obtained with OSA without clustering

better average results (more than half a percent) than OSA
without clustering.

5.5 Simulations on bigger 2D meshes

We used four instances of the VOPD benchmark with
16 cores and we mapped them on an 8x8 2D mesh.
SA run ten times and OSA and BB run 100 times. We
obtained an average running time of 12.65 hours (per
simulation) for SA. BB required just 114 seconds and
OSA was 36% slower than BB. Still, OSA’s runtime is
significantly lower than CSA’s runtime: 4750 seconds Lu
et al. (2008). OSA consumes with approximately 39%
less memory than Branch and Bound. The best mapping
was found by Simulated Annealing. However, OSA’s best
mapping is only 0.7% worse. We obtained a BB average
mapping cost 70% worse than OSA’s.

Using all E3S benchmarks we obtained 84 cores that we
mapped onto a 10x9 mesh. SA required approximately 70
hours per simulation. Branch and Bound needed only 380
seconds (on average). OSA was 48% slower than BB. OSA
consumed approximately the same memory Branch and
Bound required (we noticed Branch and Bound prunes
85% to 93% of the explored search space). Branch and
Bound gave, on average, a mapping cost 76% worse than
OSA’s. Simulated Annealing found the best solution but,
it is better than OSA’s best solution by only 0.09%.

Using the H.264 (CTG 1), MMS (CTG 0), MMS (CTG
1), MPEG4, MWD and VOPD (CTG 0) benchmarks, we
obtained 97 cores (10x10 NoC). We used only OSA and BB
(both were run ten times). Optimized Simulated Annealing
run on average approximately 15.9 minutes per simulation,
being only 3% slower than BB. The memory consumption
was similar (40 MB). The solution quality was the same,
like in the previous case.

By combining all non E3S benchmarks, we get a bench-
mark with 131 cores (12x11 NoC). OSA required, on aver-
age, approximately 51 minutes mapping this application.
Branch and Bound was 15% faster. In this case, OSA
consumed less memory, 36 MB, while BB memory require-
ments were 14% higher. Optimized Simulated Annealing
found each time a better mapping. OSA’s solutions are
79.4% better than BB’s solutions.



Finally, we combined all of our benchmarks and obtained
215 cores (15x15 NoC). OSA run for 8.4 hours and con-
sumed (on average) 265 MB of memory, for each simula-
tion. BB’s runtime was more than half OSA’s runtime.
Memory consumption was also significantly lower: only
158 MB. However, all mapping attempts with Branch
and Bound failed. Each time, BB did not finish mapping
because it pruned more than 98.7% of the search space.
We notice BB’s memory consumption does not grow ex-
ponentially but, the quality of solution is heavily affected,
up to the point where no solution is found.

6. CONCLUSIONS AND FURTHER WORK

We presented in this paper an Optimized Simulated
Annealing (OSA) for Network-on-Chip application map-
ping. Like Hu and Marculescu’s Simulated Annealing,
OSA is energy- and performance-aware. In contrast with
their work, our approach uses application knowledge. Like
Clustered-based Simulated Annealing, OSA also performs
clustering but, implicitly and dynamically, not explicitly
and statically, with certain performance benefits. OSA
proves to be much faster than SA. In accordance with
our theoretical expectations, we obtained an average run-
time speedup of 98.95% while the quality of the mapping
solution was not lost. We showed OSA is feasible for
NoC meshes with size higher than 10x10. OSA is also
comparable to Branch and Bound in terms of memory con-
sumption and speed. However, Branch and Bound failed
to find better solutions on auto-indust and MMS (CTG 1)
benchmarks. More than this, the mapping solution given
by BB is more than 70% worse than the one found by OSA,
when mapping cores onto a 2D mesh with size greater than
8x8. We also found that Branch and Bound is unable to
map an application with 215 cores, onto a 15x15 NoC.

The comparisons between OSA and CSA runtimes are
likely to be unfair. This can be due to several reasons:
implementation language (OSA is written in Java but,
we do not know how CSA is implemented), cost function
(OSA is energy aware, while CSA is bandwidth and la-
tency constrained). Also, CSA does not specify the number
of generations per temperature level. Still, we consider
OSA is faster than CSA because of the significantly high

differences in runtime.

As further work, we plan to implement CSA in UniMap.
Other directions for future work are to evaluate OSA
using bandwidth constraints and generating deadlock- and
livelock-free routing functions. We also intend to evaluate
OSA on topologies other than the 2D mesh.
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